J/Y Survival in hot plasma

NED & TURIC 2012 (Hersonissos)

P.B. Gossiaux SUBATECH, UMR 6457 Université de Nantes, Ecole des Mines de Nantes, IN2P3/CNRS

With J. Aichelin H. Berrehrah, Th. Gousset, & V. Marin

- I. Motivation
- II. Understanding (partly) the present RHIC data on HQ E-loss
- III. Quarkonia formation: probing the QGP?
- IV. Consequences of microscopic treatment of QQbar states on survival probability

Probing QGP with heavy flavors

Heavy Flavor Electron v₂

Nuclear modification factor (R_{AA}) of D mesons probes c-quark energy loss in QGP (not seen in pA)

Quarkonia in Stationary QGP

How can we prove (at best) that we have achieved is really *deconfined* state of matter ? Challenge

- "deconfinometer" =
 Color fluctuations
 Propagation of quarks over large distances

Best candidate:

Quarkonia (Q-Qbar bound state) sequential "suppression", i.e. melting and/or dissociation (Matsui & Satz 86)

Indeed observed at SPS (CERN) and RHIC (BNL) experiments. However:

- alternative explanations, lots of unknown (also from theory side)
- no additional suppression at RHIC w.r.t. SPS !

Nevertheless: Still best candidate and dedicated $(di-\mu)$ program at LHC

Caviats & Uncertainties

I. Quarkonia in *stationnary* medium are not understood from the fundamental LQCD theory

II. Criteria for quarkonia "existence" (as an effective degree of freedom) in *stationnary* medium is even less understood

III. What does this stationary picture has to do with reality anyhow ?

Need for a time-dependent scenario

From A. Mocsy (Bad Honnef 2008)

Semi-Qualitative questions

1. Are the data compatible with the picture of a strongly bound $J/\psi\,$ (sequential suppression) ?

2. Can we challenge the picture of statistical recombination (A. Andronic, PBM, J. Stachel) ?

3. Can we try to *extract* the dissociation temperature from the data ?

The *main* object of interest here: T_{diss} (thermometer aspect): one of the fundamental quantities of statistical QCD.

Quarkonia fate along decreasing T(t)

The idea: AS THE LATTICE and POTENTIAL MODELS are inconclusive, let T_{diss} as a *free parameter* and see if this can be constrained by the data (hence the title)

II. "Understanding" the RHIC HQ-data

What is the dominant E loss mechanism @ RHIC ? And does its detailed origin influence the fate of quarkonia's ?

Our basic ingredients HQ for energy loss

Coherent Radiative

Formation time picture: for $I_{f,mult} > \lambda$, gluon is radiated coherently on a distance $I_{f,mult}$

Model: all N_{coh} scatterers acts as a single effective one with probability $p_{Ncoh}(Q_{\perp})$ obtained by convoluting individual probability of kicks

$$\frac{d^2 I_{\text{eff}}}{dz \, d\omega} \sim \frac{\alpha_s}{N_{\text{coh}} \tilde{\lambda}} \ln \left(1 + \frac{N_{\text{coh}} \mu^2}{3 \left(m_g^2 + x^2 M^2 + \sqrt{\omega \hat{q}} \right)} \right)$$

{Radiative + Elastic} vs Elastic for leptons @ RHIC

El. and rad. Eloss exhibit very different energy and mass dependences. However...

 σ_{el} & σ_{rad} cocktail: rescaling by K=0.6 σ_{el} alone rescaling: K=2

One "explains" it all with $\Delta E \alpha L$ (for HQ)

RHIC data cannot decipher between the 2 local microscopic E-loss scenarios

QGP properties from HQ probe

Gathering all rescaled models (coll. and radiative) compatible with RHIC R_{AA}:

Lesson Yes, it seems possible to reveal some fundamental property of QGP using HQ probes

D mesons at LHC (vs ALICE)

> physics of HQ at low momentum w.r.t. fluid cell seems "under control"

III. Quarkonia in QGP

Integrated J/ Ψ numbers @ RHIC

First, we need a baseline taking into account the cold nuclear matter effects (Shadowing, Cronin,..); we take the picture of R. Granier de Cassagnac (2007)

Progress to be made here

Integrated J/ Ψ numbers @ RHIC

Next, the (instantaneous) vetoing of quarkonia formation due to melting:

Good agreement obtained with a rather large value of $T_{diss} \approx 2 T_c$.

Some claims of "sequencial suppression" with a very bound J/ψ were indeed made by several physicists

We do not need recombination !"""... except that Q and Qbar may be close in phase space

Turning on (re)combination + hard dissoc

(Re)combination (could become dominant at LHC):

(transport theory)

Basic Ingredients

Dissociation

Recombination

Turning on (re)combination + hard dissoc

Typical value for strongly bound

Problem: One has to reduce the fusion probability by a factor ~10 to reproduce the data (if recomb. cross section taken at face value, one arrives at R_{AA} (most central > 2 !).

Problem never comes alone: Strongly bound quarkonia are the ones for which the Bhanot-Peskin approach should be legitimate. Φ states exist early => lot of HQ pairs present in pahse space

Absolute numbers are better reproduced (if one believes in mostly canonical – cranck=0.5-1 – recombination), although the R_{AA} dependence on N_{part} is not as satisfying

Best parameters from R_{AA}

"Optimal" choices in the (T_{diss}, σ_{fus} .) parameter plane

Conclusion: $T_{diss} \in [0.2, 0.3]...$ but difficult to go beyond

Finer analysis: Thermometer of what ?

Other parameters... E_{loss}, detailed Medium evolution...

Dominant production at various time depending on T_{diss}... saturates *before* the end of the QGP

22

Finer analysis: role of HQ energy loss

Eloss

No Eloss

However: Once the Energy loss has been "properly" calibrated on non-photonic single-e R_{AA}, then the production rates do not depend too much on the detailed phenomena

Prediction for LHC:

Fusion of c-quarks at LHC: 15-25 x more probable that at RHIC, but strong increase of the prompt J/ ψ as well....

Preliminary conclusions

Reasonnable agreement with RHIC data for J/ψ (for other observables (p_T , v_2): see Hamza's talk this afternoon), but difficulties to tame the recombination down

1. Are the data pointing towards the picture of a strongly bound $J/\psi\,$ (sequential suppression) ?

Not so obvious to us

2. Can we challenge the picture of statistical recombination (A. Andronic, PBM, J. Stachel) ?

Statistical recombination picture could not be recovered from the transport theory

3. Can we try to *extract* the dissociation temperature from the data ?

A rather large effective dissociation temperature ($T_{diss} \approx 0.25-0.3 \text{ GeV}$) seems to be favored by the data, provided one has a good quantitative argument to explain why the recombination of HQ should be reduced by a factor 10 w.r.t. the naive Bhanot - Peskin cross section (gluon mass ? J/ ψ (T) in BP ?)

Otherwise, low dissociation (T_{diss} \approx 0.2 GeV) are unavoidable

IV. Beyond the dual model

Please keep in mind: Quarkonia represent only a small % of the total QQbar state => should not be treated independently from one another (besides recombinations)

J/Psi suppression at high temperature

Standard folklore:

- a) Following sequential suppression (quasi-stationnary picture)... The quarkonia which should be formed at (t_0,x_0) is not if $T(t_0,x_0)>T_{diss} => Q-Qbar$ pair is "lost" for quarkonia formation
- b) Refined version wrt a) : quarkonia need some formation time tf to be resolved:

J/Psi suppression at high temperature

We let the QQbar pair evolve until $(t_0 + t_f, \vec{x}_0 + \vec{v}_{Q\bar{Q}}t_f)$ and then look whether

$$T\left(t_0 + t_f, \vec{x}_0 + \vec{v}_{Q\bar{Q}}t_f\right) > T_{\text{diss}}$$

Not formed

 $T\left(t_0 + t_f, \vec{x}_0 + \vec{v}_{Q\bar{Q}}t_f\right) < T_{\text{diss}}$

Formed as in vacuum, then dissociated through « hard » collisions

J/Psi formation at high temperature

Alternate description: Q-Qbar state described by a wave function evolving in V=0

J/Psi suppression

1rst crude description ("dual" model):

J/Psi suppression (microscopic)

Continuous evolution

For this example: Survival $\approx 0.13/0.4 \approx 33\%$

Important feature: quantum evolution leads to smooth suppression patterns

For realistic QGP lifetimes at RHIC: Survival of a few % (neglecting corona effects) => Should we care ?

J/Psi suppression (microscopic)

- BUT: 2 missing ingredients
 - 1. Q-Qbar forces (beginning 90s':Thews, Gossiaux and Cugnon,...):

permits to preserve some Q and Qbar at close distance

Indeed, the "residual" potential permits to slow down the suppression along time ! We converge towards asymptotic survival probabilities \in [0,1]

J/Psi suppression (microscopic)

BUT: 2 missing ingredients

2. Stochastic q-Q, g-Q forces

For a long while: interactions with QGP/hot medium constituents only thought as the source for quarkonia dissociation (Bhanot – Peskin) and treated through inelastic cross-sections... True for dilute media

Shuryak & Young (08):

In strong QGP, diffusion of HQ slow down their separation ($<r^2> \alpha D_s t$) and helps in reducing the suppression !!!

Shuryak & Young (08): some ingredients

✓ U as a potential

The most "binding" choice; Around Tc: String tension up to 3 times string tension in vacuum !!!

Shuryak & Young (08): some ingredients

✓ Dealing both with quantum evolution and stochastic forces:

Wigner Moyal distribution:

$$F(\mathbf{x}^{N}, \mathbf{p}^{N}, t) = \left(\frac{1}{\pi\hbar}\right)^{3N} \int e^{2i\mathbf{p}^{N}\cdot\mathbf{y}^{N}t\hbar} \rho(\mathbf{x}_{-}^{N}, \mathbf{x}_{+}^{N}, t) d\mathbf{y}^{N}$$

Right concept for non pure quantum system (statistical average), but also to make contact with semi-classical interpretations

Wigner-Moyal equation in relative coordinates:

$$\begin{pmatrix} \frac{\partial}{\partial t} + \frac{\vec{p}}{\mu} \cdot \frac{\partial}{\partial \vec{x}} \end{pmatrix} f(\vec{x}, \vec{p}; t) = \frac{2}{\hbar} \sin\left(\frac{\hbar}{2} \frac{\partial}{\partial \vec{p}} \cdot \frac{\partial}{\partial \vec{x}}\right) V(\vec{x}) f(\vec{x}, \vec{p}; t) + I_{col}$$
with $\vec{x} = \vec{x}_Q - \vec{x}_{\bar{Q}}$ and $\vec{p} = \frac{\vec{p}_Q - \vec{p}_{\bar{Q}}}{2}$

Exact equation, but difficult to solve due to sign problem

Shuryak & Young (08): some ingredients

Dealing both with quantum evolution and stochastic forces:

Semi-classical expansion => 1 body Liouville equation:

$$\left(\frac{\partial}{\partial t} + \frac{\vec{p}}{\mu} \cdot \frac{\partial}{\partial \vec{x}} - \frac{\partial V}{\partial \vec{x}} \cdot \frac{\partial}{\partial \vec{p}}\right) f(\vec{x}, \vec{p}; t) = I_{\text{col}}$$

Test particles method, submitted to the QQbar force + stochastic external forces

Langevin evolution with binding force (v fast !!! v)

Prob J/
$$\psi$$
(t): $P_{J/\psi}(t) = \frac{1}{N} \sum_{i=1}^{N} f_{J/\psi}(\vec{x}_i(t), \vec{p}_i(t))$

Caviat: f is not a density (not defined positive) semi-classical approx justified ?

Notice however that $f_{J/\psi}$ is mostly positive (but not a full justification)

Shuryak & Young (08): some ingredients

- ✓ Stochastic force on Q and Qbar are uncorrelated
 - ... although QQbar is seen as a dipole at short distances

...but most of QQbar pairs are not at close distance already after short time => probably ok !

✓ Hydro evolution and HQ dynamics from Moore and Teaney (2005). In particular $D_c \ge 2\pi T = 1.5-3 =>$

Test of robustness

Goal of our contribution:

- ✓ Get acquainted with the impact of stochastic forces on quarkonia suppression
- ✓ Test the robustness of the results obtained by Young and Shuryak, modifying a) the V(T) and b) the drag coefficient A(T)

Test of robustness I

T=225 MeV (T/Tc \approx 1.4):

Nearly unbound if one takes $V=V_{PM}$, still strongly bound if one takes V=U

 $\sqrt{\langle r^2(t=0) \rangle} = 0.2 \text{ fm}$

Stochastic cooling down of ccbar state

Test of robustness I

T=225 MeV (T/Tc ≈ 1.4):

V=V_{PM} (weakly bound)

V=U (strongly bound)

At later times, the stochastic sources act as a source of dissociation of the remaining state

Test of robustness II

T(τ), central Au-Au @ RHIC, $\vec{x}_{\perp} = \vec{0}$ V=V_{PM} (weakly bound)

V=U (strongly bound)

Similar features as for T=225: rapid thermalization in p-space (-> quasi equilibrium), followed by induced leakage in r space

For potential chosen as V=U, survival compatible to 0.5, as claimed by Young and Shuryak

Test of robustness II

V=V_{PM} (weakly bound)

V=U (strongly bound)

> No large dependence vs precise choice for drag coefficient...

➢ But large dependence vs choice of potential, especially if one includes the stochastic forces (can dissociate weakly bound states, but rather inefficient to dissociate strongly bound states).

Survival @ LHC

Even at LHC, up to 25% survival if V=U

Conclusion & Prospects

1. We confirm the claim of Shuryak and Young of large J/y survival... for V chosen to be the total energy U...

2. However, their choice of parameters probably correspond to the most favorable case !

Possible way to make progress on this point: evaluate $\Gamma_{J/\psi}(T)$ for both types of potentials and compare with lattice

3. Important to include a time-dependent microscopic description of QQbar states in the transport codes... to be pursued

Back Up

The Landscape

Degree of thermalization of heavy quarks will not affect "too much" the integrated production rates; T_{diss} is the driving parameter for "recombined" J/ψ :

Turning on (re)combination at y=2

No room left for coalescence at y=2. What are the physical mechanisms for taming the fusion ?

Moreover: The pQCD Bhanot and Peskin result is usually considered to be small w.r.t. other effective approaches at small s-M²

Good agreement with the same σ_{fus} band (Cranck. $\in [0.5,1]$) T_{diss}/T_c >(>)1 Hard probe $T_{diss}/T_c \approx 1$ Soft probe

The P_T world

Differential production might reveal more physics

Prediction for b=0 and just recombination (2004)

QGP "cools" the charms, even with the radial flow

Softer p_T spectrum as for direct production. Possible " p_t shrinking" in A-A. But first, understand the k_t broadening in d+Au (none seen around y=0 !?)

The P_T world

... and now compared with the data:

France 2009)

The keystone (?): v₂

In fact, due to possible elastic cross section of $J/\psi, v_2$ is only conclusive if one observes NO v_2

µ-local-model: medium effects at finite T in t-channel

Central R_{AA} vs model & intermediate conclusion

I. Improved collisional Eloss plays a larger role then expected

II. Despite the unknowns (b-c crossing, precise kt broaden.,...), unlikely that collisional energy loss could explain it all *alone*III. It is however not excluded that the "missing part" could be reproduced

by some conventional pQGP process (radiative Eloss)

Rete-Quarkonii 2010

Monte Carlo Implementation

I) For each collision with a given q_{\perp} , we define the conditional probability of radiation:

$$r(q_{\perp}) := \frac{\int_{0}^{+\infty} \frac{d^2 \sigma_{\rm rad}}{d\omega dq_{\perp}^2} d\omega}{\frac{d\sigma_{\rm el}^{Qq}}{dq_{\perp}^2}}$$

In practice, ω_{min} =5% E to avoid IR catastrophy

 II) For each collision with a given invariant mass squared s, we define the conditional *total* probability of radiation:

$$\tilde{r}(s) = \frac{\sigma_{\rm rad}}{\sigma_{\rm el}} \approx \frac{\int_{-|t|_{\rm max}}^{0} r(\sqrt{-t}) \frac{d\sigma_{\rm el}^{Qq}(t)}{dt} dt}{\int_{-|t|_{\rm max}}^{0} \frac{d\sigma_{\rm el}^{Qq}(t)}{dt} dt}$$

Probes the elastic cross section at larger values of t => less sensitive to α_{eff} at small t-values

Monte Carlo Implementation

III) For a given HQ energy E, we sample the entrance channel according to the thermal distribution of light quarks and gluons and $\sigma_{\rm el}(s)$ and accept according to the conditional probability $\tilde{r}(s)$

- Too large quenching; good as we obviously overestimate the radiative Eloss
- 2. Radiative Eloss indeed dominates the collisional one
- 3. Flat experimental shape is well reproduced

separated contributions $e \leftarrow D$ and $e \leftarrow B$.

Results

- Collisionnal + radiative energy loss + dynamical medium : *compatible* with data
- Shape for radiative E loss and rescaled collisional E loss are pretty similar
- To my knowledge, one of the first model using radiative Eloss that reproduces v₂

Formation time for a single coll.

Rete-Quarkonii 2010

A simplifying hypothesis

Comparing the formation time (on a single scatterer) with the mean free path:

Coherence effect for HQ gluon radiation :

$$\Leftrightarrow \quad \frac{E}{M} \gtrsim m_g \lambda_Q \sim \frac{1}{g_s}$$

Maybe not completely foolish to neglect coherence effect in a first round for HQ.

(will provide at least a maximal value for the quenching)

Basics of Coherent Radiation

Subject of numerous (mosty numerical) investigations

See Peigné & Smilga (2008) for some analytical results pertaining to HQ

Rete-Quarkonii 2010

Formation time in a random walk

Phase shift at each collision

One obtains an effective formation time by imposing the cumulative phase shift to be $\Phi_{\rm dec}$ of the order of unity

For light quark (infinite matter):

Formation time and decoherence for HQ

"Competition" between

- decoherence" due to the masses: $m_q^2 + x^2 M^2$
- decoherence due to the transverse kicks

$$\langle Q_{\perp}^2 \rangle = l_{f, \text{mult}} \, \hat{q}$$

Special case:
$$\lambda < l_{f,\text{mult}} < L_{\text{QCD}}^{\star\star} := \frac{m_g^2 + x^2 M^2}{\hat{q}}$$

One has a possibly large coherence number $N_{coh} := I_{f,mult}/\lambda$ but the radiation spectrum per unit length stays mostly unaffected:

Radiation on an effective center of length $I_{f,mult} = N_{coh} \lambda \longrightarrow \begin{bmatrix} \underline{d}^2 I \\ \underline{d} z d \omega \end{bmatrix} \leftarrow$ Radiation at small angle $\alpha \langle Q_{\perp}^2 \rangle$ i.e. αN_{coh} Compensation at leading order !

LESSON: HQ radiate less, on shorter times scales but are less affected by coherence effects than light ones !!! (dominance of 1rst order in opacity expansion)

Rete-Quarkonii 2010

Formation time and decoherence for HQ

Criteria: HQ radiative E loss strongly affected by coherence provided:

Regimes and radiation spectra

Semi-quantitative model:

PFor $I_{f.mult} > \lambda$, gluon is radiated coherently on a kdistance I_{f.mult} Model: all scatterers acts as a single effective one with probability $p_{Ncoh}(Q_{\perp})$ obtained by convoluting individual probability of kicks $\left(\frac{d^2 I_{\text{``QCD''}}^{x \ll 1}}{dz \, d\omega}\right)_{\text{coh}} \approx \frac{2N_c \alpha_s}{\pi l_{f,\text{mult}}} \left\langle \ln \left(1 + \frac{Q_{\perp}^2}{3\tilde{m}_g^2}\right) \right\rangle_{p_{N_{\text{coh}}}} \quad \text{with} \quad \tilde{m}_g^2 \approx m_g^2 + x^2 M^2 + \sqrt{\frac{\hat{q}\omega}{\Phi_{\text{dec}}}} \right)$ After averaging: Prevents radiation of gluon of formation time > $I_{f.mult}$ $\frac{d^2 I_{\text{eff}}}{dz \, d\omega} \sim \frac{\alpha_s}{N_{\text{coh}} \tilde{\lambda}} \ln \left(1 + \frac{N_{\text{coh}} \mu^2}{3 \left(m_a^2 + x^2 M^2 + \sqrt{\omega \hat{q}} \right)} \right)$

- Compares well to the BDMPS result (N_{coh} >>1) for light quark (up to some color factor = rescaling), including the coulombian logs.
- Naturally interpolates to the massive-GB regime for $N_{coh} \leq 1$.
- Incorporates all regimes discussed above.

P'