

by Alex Meistrenko with A. Peshier (Cape Town), J. Uphoff (Frankfurt) and C. Greiner (Frankfurt) reference: <u>arXiv:1204.2397v1</u> (04.2012)

NeD/TURIC 28.06.2012



H-QM Helmholtz Research School Quark Matter Studies



## Elastic energy loss model

- elastic dE/dx of heavy quarks in the case of a non-static thermalized QGP
- pQCD transition matrix approach with
  - quantum distribution functions
  - running coupling
  - effective screening mass adjusted to HTL calculations
  - Peterson fragmentation and meson decay with Pythia
- comparison with RHIC data for electorn yields from heavy flavor decays

#### Mean energy loss in the QGP

interaction rate:  $\Sigma$  is evaluated at the energy  $p_0 = E + i\epsilon$ :

$$\Gamma_{i}(E) = -\frac{1}{2E} \left(1 - n_{F}(E)\right) \operatorname{tr}\left[\left(\gamma^{\mu} P_{\mu} + M\right) \operatorname{Im}\Sigma\left(P\right)\right], \quad \frac{dE_{i}}{dx} = \frac{1}{v} \int d\omega \,\frac{\partial\Gamma_{i}}{\partial\omega}\omega$$

contribution from  $|t| < |t^*|$  with  $m_D^2 \ll |t^*| \ll T^2$ :

$$\frac{dE_i}{dx} = \frac{K(C_F, \alpha)}{v^2} \int_{t^*}^0 dt \, (-t) \int_{-v}^v dx \frac{x}{(1-x^2)^2} \left[\rho_L + \left(v^2 - x^2\right)\rho_T\right], \quad t = \omega^2 - q^2, \quad x = \omega/q$$

spectral functions and HTL propagators:

$$\rho_{L,T}(\omega,q) := -\frac{1}{\pi} \operatorname{Im}\left[\Delta_{L,T}(\omega+i\epsilon,q)\right], \quad \Delta_{L}(\omega,q) = \frac{1}{q^{2} + \Pi_{L}(x)}, \quad \Delta_{T}(\omega,q) = \frac{1}{\omega^{2} - q^{2} - \Pi_{T}(x)}$$

with the self-energies:

$$\Pi_L(x) = m_D^2 \left[ 1 - Q(x) \right], \quad \Pi_T(x) = \frac{m_D^2}{2} x \left( 1 - x^2 \right) Q'(x), \quad Q(x) := \frac{x}{2} \ln \frac{x+1}{x-1}$$

2

#### Collisional energy loss of heavy quarks

#### Mean energy loss in the QGP

contribution from  $|t| > |t^*|$  with  $\int_k := \int d^3k/(2\pi)^3$ :

$$\frac{dE_i}{dx} = \frac{1}{2Ev} \int_k \frac{n_i(k)}{2k} \int_{k'} \frac{\overline{n}_i}{2k'} \int_{p'} \frac{1}{2E'} (2\pi)^4 \delta^{(4)} \left(P + K - P' - K'\right) \frac{1}{d} \sum_{spin, color} \left|\mathcal{M}_i\right|^2 \omega$$

in the limit  $E \to \infty$  and E >> T:

$$\frac{dE_i}{dx} = d_i \int_k \frac{n_i(k)}{2k} \int_{t_{min}}^{t^*} dt (-t) \frac{d\sigma_i}{dt}$$

both contributions from  $|t| < |t^*|$  and  $|t| > |t^*|$  lead to the NLL formula:

$$\frac{dE}{dx} = \frac{4\pi\alpha_s^2 T^2}{3} \left[ \left( 1 + \frac{n_f}{6} \right) \ln \frac{ET}{m_D^2} + \frac{2}{9} \ln \frac{ET}{M^2} + c(n_f) \right] \quad \text{with} \quad c(n_f) \approx 0.146 \cdot n_f + 0.050$$

and for running coupling:

$$\frac{dE}{dx} = \frac{4\pi T^2}{3} \alpha_s(m_D^2) \alpha_s(ET) \left[ \left( 1 + \frac{n_f}{6} \right) \ln \frac{ET}{m_D^2} + \frac{2}{9} \frac{\alpha_s(M^2)}{\alpha_s(m_D^2)} \ln \frac{ET}{M^2} + c(n_f) + \mathcal{O}\left( \alpha_s(m_D^2) \ln \frac{ET}{m_D^2} \right) \right]$$
3

### Mean energy loss with QGP flow

replace Bose and Fermi by the Jüttner distribution functions:

$$n_{BJ} = \frac{1}{e^{\gamma \left(E_k - \vec{\beta} \cdot \vec{k}\right)/T} - 1}, \qquad n_{FJ} = \frac{1}{e^{\gamma \left(E_k - \vec{\beta} \cdot \vec{k}\right)/T} + 1}.$$

in the parallel case  $(\vec{\beta} || \vec{p})$ :

$$\frac{dE}{dx}\Big|_{\parallel}^{fix} = \frac{4\pi\alpha_s^2 T^2}{3} \left[ \left(1 + \frac{n_f}{6}\right) \ln \frac{E\gamma\left(1 - \beta\right)T}{m_D^2} + \frac{2}{9} \ln \frac{E\gamma\left(1 - \beta\right)T}{M^2} + c\left(n_f\right) \right]$$

in general:

$$\frac{dE}{dx} = \frac{4\pi\alpha_s^2 T^2}{3} \left[ \left( 1 + \frac{n_f}{6} \right) \ln \frac{p_\mu \beta^\mu T}{m_D^2} + \frac{2}{9} \ln \frac{p_\mu \beta^\mu T}{M^2} + c\left(n_f\right) \right]$$

## Mean energy loss with QGP flow



Collisional energy loss of heavy quarks

Alex Meistrenko

## MC-simulation: transition matrix

thermalized medium with quarks and gluons:  $\tau = 0.6 - 0.8 \, fm/c$ 

$$P_{ij} \approx \Delta t \sum_{k=1}^{n} \frac{\Delta u' \Delta \xi}{n} \cdot \frac{\partial^2 \Gamma(u; u'_{i,k}, \xi_{j,k})}{\partial u' \partial \xi}, \quad 0 \leq i < N_u, \quad 0 \leq j < N_{\xi}$$

$$\Rightarrow N_u \text{ matrices are needed (ingoing u)}$$

$$\stackrel{\text{mappings:}}{\underset{i = 1}{\overset{0^2}{10^3}} \underbrace{\partial^2 \Gamma(u; u', \xi)}{\partial u' \partial \xi} \quad u : \mathbb{R}_0^+ \to [0, 1), \quad p' \mapsto u(p') = \frac{e^{p'/p_0} - 1}{e^{p'/p_0} + 1}$$

$$\xi : [0, \pi] \to [0, 1], \quad \vartheta \mapsto \xi = \left(\frac{1 - \cos \vartheta}{2}\right)^{\frac{1}{4}}$$

$$u(t + \Delta t) = u'$$

$$u(t) = u$$

as input: available partonic or hydro models for the background medium,  $T_{cell}(\vec{x}, t)$ ,  $\vec{v}_{cell}(\vec{x}, t)$ 

### Effective screening mass and numerics

no convergence for the Debye screening mass (soft part of  $\partial \Gamma / \partial \omega$  has to be screened):  $\left. \frac{dE}{dx} \right|_{num.} \neq \left. \frac{dE}{dx} \right|_{analytic}$ 

effective screening mass for the Born cross sections:  $\mu^2(t) = \kappa \cdot 4\pi \left(1 + \frac{n_f}{6}\right) \alpha(t) T^2 \Rightarrow \frac{\alpha_s}{t - \Pi_T(\omega, q)} \rightarrow \frac{\alpha_s}{t - \mu^2(t)}$ analytical evalution of  $\partial \Gamma / \partial \omega$  with  $\mu^2(t)$  and comparing with HTL calculation of dE/dx leads to:  $\kappa = \frac{1}{2e} \simeq 0.2$  $\Rightarrow$  convergence of the numerical results against the analytic NLL formula



#### Collisional energy loss of heavy quarks

#### Alex Meistrenko

### Peterson fragmentation



the following stage of heavy meson decays to electrons is calculated with PYTHIA 8.1

## Results: nuclear modification factor

 $R_{AA} = \frac{d^2 N_{AA}/dp_T dy}{N_{b.coll.} d^2 N_{NN}/dp_T dy} \simeq \frac{d^2 N_{AA}^{final}/dp_T dy}{d^2 N_{AA}^{initial}/dp_T dy}$ 



9

Collisional energy loss of heavy quarks

Alex Meistrenko

## Results: elliptic flow



<sup>10</sup> 

# Conclusion

- more realistic scenario
  - quantum statistics, running coupling, effective screening mass, light quarks and gluons, fragmentation, decay of mesons, different background media
- significant contribution of elastic processes
  - RAA can be reproduced up to a factor of 2
  - v<sub>2</sub> can be reproduced up to a factor of 3
  - discrepancy could be an effect of radiative energy loss and/or uncertain initial conditions
- possible modifications:
  - different initial conditions
  - hadronization of the medium particles
  - implementation of bremsstrahlung





Collisional energy loss of heavy quarks

Alex Meistrenko