From (on-shell) transport to hydro and back

Denes Molnar, Purdue University

deD/TURIC Workshop 2012, Hersonissos, Gre

in collaboration with Zack Wolff & Dustin Hemphill (students)

D. Molnar Q Ned/TURIC, Jun 25-30

Office of Science

Motivation / Outline

Romatschke & Luzum, PRC78 ('08): hydro - nice & simple

• but thermalization puzzle is complicated - e.g., radiative transport

• moreover, cannot escape understanding hadronic transport

Our MPC/Grid radiative $3 \leftrightarrow 2$ transport (on-shell)

– Typeset by FoilT $_{E}$ X – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

Covariant transport

(on-shell) phase-space density $f(x, \vec{p}) \equiv \frac{dN(\vec{x}, \vec{p}, t)}{d^3x d^3p}$

transport equation:

 $p^{\mu}\partial_{\mu}f_{i}(x,p) = C^{i}_{2\to 2}[\{f_{j}\}](x,p) + C^{i}_{2\leftrightarrow 3}[\{f_{j}\}](x,p) + \cdots$

with, e.g.,

$$C_{2\to2}^{i} = \frac{1}{2} \sum_{jkl} \int_{234} (f_{3}^{k} f_{4}^{l} - f_{1}^{i} f_{2}^{j}) W_{12\to34}^{ij\to kl} \qquad \left(\int_{j} \equiv \int \frac{d^{3} p_{j}}{2E_{j}} , \quad f_{a}^{k} \equiv f^{k}(x, p_{a}) \right)$$

fully causal and stable, can equilibrate

near hydrodynamic limit, transport coefficients and relaxation times:

 $\eta \approx 1.2T/\sigma_{tr}$, $\tau_{\pi} \approx 1.2\lambda_{tr}$

– Typeset by FoilT $_{E}X$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

2
ightarrow 2 transport DM & Gyulassy, NPA 697 ('02)

radiative $3 \leftrightarrow 2 \times 4$ Greiner, ('08)

perturbative $2 \rightarrow 2$ rates not enough, need $\sim 15 \times$ higher to get enough v_2

but radiative $3 \leftrightarrow 2$ seems to help

MPC/Grid

our transport equation solver using test particles on a rectangular grid

parameters: time step Δt , cell sizes d_x, d_y, d_z , subdivision ℓ

- collision probability during one time step for pair/triplet

$$P_{2 \to X} = \frac{\sigma_{2 \to X} v_{rel} \Delta t}{V_{cell}}$$
$$P_{3 \to 2} = \frac{K_{3 \to 2} \Delta t}{V_{cell}^2}$$

- outgoing momenta generated according to matrix elements
- we can use subdivision to control number of particles per cell

Main advantage: 5 adjustable knobs instead of just 1 for cascade algorithm \Rightarrow more flexibility

Main question: how much faster is equilibration with $3 \leftrightarrow 2$?

pQCD-motivated matrix elements coming soon...

but for now, massless particles with energy-independent, isotropic scattering

i)
$$d\sigma_{2\to 2}/d\Omega = const$$
 \Rightarrow $|\bar{M}_{2\to 2}|^2 = 16\pi s\sigma_{2\to 2}$

$$\mathbf{ii)} \ \sigma_{2 \to 3} = const, \ d\sigma_{2 \to 3} = const \times d^3 p_3 d^3 p_4 d^3 p_5 \quad \Rightarrow \quad |\overline{M}_{2 \leftrightarrow 3}|^2 = 3072\pi^3 \sigma_{2 \to 3}$$
$$\Rightarrow K_{3 \to 2} = \frac{24\pi^2 \sigma_{2 \to 3}}{gE_1 E_2 E_3}$$

compare i) pure
$$2 \rightarrow 2$$
 with $\sigma_{22} = \sigma_0$
ii) pure $3 \leftrightarrow 2$ with the same $\sigma_{23} = \sigma_0$
iii) 50-50% split, $\sigma_{22} = \sigma_{23} = \sigma_0/2$

– Typeset by FoilT_EX – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

equilibration in uniform box with initial $f(\vec{p}) \propto \delta(p_z - p_0) + \delta(p_z + p_0)$

 $3 \leftrightarrow 2$ is ~ 50% more efficient (isotropic case)

higher/lower efficiency in over/undersaturated case

 $n|_{t=0} = 2n_{equil}$

 $n|_{t=0} = n_{equil}/2$

cooling in longitudinal Bjorken scenario (pdV work)

extends Zhang, Pang, Gyulassy ('97); and DM & Gyulassy ('99)

same $\sim 50\%$ enhancement

– Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

conclusion for QCD will likely be better

- $2 \rightarrow 2$ strongly forward-peaked
- $3 \leftrightarrow 2$ opens up more phase space

but importance of $3 \leftrightarrow 2$ **is debated, e.g.,** Arnold, Moore, Yaffe, JHEP 0011, and Chen, Deng, Dong & Wang, arXiv:1107.0522v4 claim only modest effect

we will check this soon...

Chen, Deng, Dong & Wang, arXiv:1107.0522v4

Why viscous hydro calculations need to know about transport

– Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

Hydrodynamics

Equations of motion

$$\partial_{\mu}T^{\mu
u}(x)=0$$
 , $\partial_{\mu}N^{\mu}_{B}(x)=0$

Ideal hydro:

$$T^{\mu\nu}_{id} = (e+p) u^{\mu} u^{\nu} - p g^{\mu\nu} \quad , \qquad N^{\mu}_B = n_B u^{\mu}$$

Viscous hydro:

$$T^{\mu\nu}(x) = T^{\mu\nu}_{id}(x) + \pi^{\mu\nu}(x) - \Pi(x)\Delta^{\mu\nu}(x)$$
$$\dot{\pi}^{\mu\nu} = F^{\mu\nu}(e, u, \pi, \Pi) , \quad \dot{\Pi} = G(e, u, \pi, \Pi)$$
(e.g. Israel-Stewart theory)

Needs:

- equation of state $p(e,n_B)$, $T(e,n_B)$ and transport properties η , ζ , τ_π , ...
- initial conditions
- decoupling (freezeout) prescription *

Cooper-Frye freezeout

<u>Assume</u> sudden transition to a gas on a 3D hypersurface (typically T = constor $\varepsilon = const$)

$$E \, dN = p^{\mu} d\sigma_{\mu}(x) \, d^3 p \, f_{gas}(x, \vec{p})$$

(covariant analog of t = constfreezeout $dN/d^3xd^3p = f(\vec{x}, \vec{p}, t_{fo})$)

Good: - conserves energy-momentum and charges locally

Bad: - negative contributions possible $p \cdot d\sigma < 0$ - arbitrariness in choice of HS & self-consistency problem

exist alternative approaches, e.g., Kodama, Grassi et al; Csernai et al

Hydro \rightarrow **particles**

In hydro <u>and</u> hydro+transport studies one must convert fluid to particles.

two effects: - dissipative corrections to hydro fields u^{μ}, T, n

- dissipative corrections to thermal distributions $f \rightarrow f_0 + \delta f$

$$T^{\mu\nu}(x) \equiv \sum_{i} \int \frac{d^3p}{E} p^{\mu} p^{\nu} f_i(p, x)$$

• in local equilibrium (ideal hydro) - "one to one"

$$T_{LR}^{\mu\nu}(x) = diag(e, p, p, p) \qquad \Leftrightarrow \qquad f_{eq,i}(x, p) = \frac{g_i}{(2\pi)^3} e^{-p^{\mu} u_{\mu}/T}$$

• near local equilibrium (viscous hydro) - "few to many"

 $T^{\mu\nu}(x) = T^{\mu\nu}_{ideal}(x) + \pi^{\mu\nu}(x) \qquad \Leftarrow \qquad f(x,p) = f_{eq,i}(x,p) + \delta f_i(x,p)$

common choice - "democratic" Grad ansatz: $\delta f_i \equiv f_i^{eq} \times \frac{\pi^{\mu\nu}}{2(e+p)} \frac{p_{\mu,i}p_{\nu,i}}{T^2}$

large effects at higher momenta (δf blows up, can even lead to f < 0)

Problem: "democratic Grad" ignores microscopic dynamics

$$\delta f_i \equiv f_i^{eq} \times \frac{\pi^{\mu\nu}}{2(e+p)} \frac{p_{\mu,i}p_{\nu,i}}{T^2}$$

answer CANNOT be universal

 \rightarrow investigate this in a nonequilibrium framework

[–] Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

Setup - 1D Bjorken \rightarrow $f_i = f_i(p_T, \xi, \tau)$, where $\xi \equiv \eta - y$

i) compute f_i from full nonequilibrium transport $p\partial f_i = \sum_j C_{ij}^{2 \to 2}[f_i, f_j]$

using MPC code

ii) from f_i , determine $T^{\mu\nu}$ and $\pi_i^{\mu\nu}$

iii) study partial shear stresses $\pi_{L,i}(\tau)/p(\tau)$, and relative magnitude of δf_i

expect dynamics to be governed by inverse Knudsen numbers:

$$K_i \equiv \frac{\tau}{\lambda_i} = \tau \sum_j n_j \sigma_{ij} = \sum_j K_{i(j)}$$

[–] Typeset by FoilT $_{E}X$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

Two-component, massless system. *A* set to equilibrate faster than *B*.

assume
$$\delta f_i = C_i (p_T/T)^2 (\operatorname{sh}^2 y - 1/2) f_i^{eq} \quad \Rightarrow \quad \pi_{L,i}/p_i = 8C_i$$

viscous corrections are <u>not</u> proportional to K_i but shear stress sharing seems universal at late times

δf from linear response

standard linear response to flow shear $\sigma^{\mu\nu} \equiv \nabla^{\mu}u^{\nu} + \nabla^{\nu}u^{\mu} - \frac{2}{3}\Delta^{\mu\nu}(\partial u)$, same as computation of shear viscosity de Groot, et al ('70s)... Arnold, Moore, Jaffe, JHEP 0011...

$$p\partial f_i = \sum_j C_{ij}^{2 \to 2} [f_i, f_j]$$

small deviations from local equilibrium $f_i = f_{0i} + \delta f_i$, 2-component case:

 $p\partial f_{0A} = C_{AA}[f_{0A}, \delta f_{A}] + C_{AA}[\delta f_{A}, f_{0A}] + C_{AB}[\delta f_{A}, f_{0B}] + C_{AB}[f_{0A}, \delta f_{B}]$ $p\partial f_{0B} = C_{BB}[f_{0B}, \delta f_{B}] + C_{BB}[\delta f_{B}, f_{0B}] + C_{BA}[\delta f_{A}, f_{0B}] + C_{BA}[f_{0A}, \delta f_{B}]$

No δf on LHS - relaxation implicitly assumed, moments beyond $T^{\mu\nu}$ ignored.

Can be recast as a variational problem:

 $\delta Q[\delta f_A, \delta f_B] = 0$

where Q_{max} is proportional to the shear viscosity.

<u>One</u> unknown function per particle species

$$\delta f_i(x,p) = \chi_i(p/T) \, \hat{p}_\mu \hat{p}_\nu \, \frac{\sigma^{\mu\nu}}{T}$$

one-component case, $2 \rightarrow 2$

$$Q[\chi] = \frac{T^2}{2} \int_{1}^{2} f_{1,eq} \chi_1 P_1 \cdot P_1 + \frac{1}{2} \iiint_{1234} f_{1,eq} f_{2,eq} \chi_1 (\chi_3 P_3 \cdot P_1 + \chi_4 P_4 \cdot P_1 - \chi_1 P_1 \cdot P_1 - \chi_2 P_2 \cdot P_1) W_{12 \to 34}$$
(1)

where

$$P_i \cdot P_j = \frac{1}{T^4} \left[(\vec{p}_i \cdot \vec{p}_j)^2 - \frac{1}{3} p_i^2 p_j^2 \right]$$

4 numerical integrals to compute (isotropic case)

linear response with $\delta f \propto p^2$ "gets" late-time $\pi^{\mu\nu}$ sharing within 10%

one-component massive gas also reproduced, caught typo in de Groot et al kinetic theory book

$$\eta^{Grad} = \frac{15z^2 K_2^2(z)h^2(z)}{16[(15z^2+2)K_2(2z) + (3z^3+49z)K_3(2z)]} \cdot \frac{T}{\sigma}$$

where

$$h(z) \equiv \frac{zK_3(z)}{K_2(z)}$$
, $z \equiv m/T$

[–] Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

Momentum dependence - Grad inconsistent with linear response!

e.g., one-component massless gas with isotropic $\sigma = const$:

Duslin et al get similar ~ $p^{1.5}$ but with forward-peaked $2 \rightarrow 2$ and $1 \leftrightarrow 2$

confirmed convergence

– Typeset by Foil $\rm T_{E}X$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

two-component, massless - not quadratic either

DM ('11)

– Typeset by FoilT $_{E}X$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

Apply to hadron gas. Approximation: $\pi - N$ system.

quite well captured with isotropic $\sigma_{eff}^{\pi\pi} = 30mb$, $\sigma_{eff}^{\pi N} = 50mb$, $\sigma_{eff}^{NN} = 20mb$

pion-proton system

pion-proton system

– Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

pion-proton system

smaller correction for protons

slower than quadratic, proton almost linear

illustrate effect on $v_2(p_T)$ using Navier-Stokes shear stress estimate

$$\pi_{NS}^{\mu\nu} = \eta \left[\nabla^{\mu} u^{\nu} + \nabla^{\nu} u^{\mu} - \frac{2}{3} \Delta^{\mu\nu} (\partial u) \right]$$

'a la' Teaney, PRC68 ('03)

but with real hydro AZHYDRO-0.2p2 (instead of Blast wave)

(EOS s95p-v1, Glauber profile, $au_0 = 0.5$ fm)

Au+Au, b=7 fm - without resonance decays Dynamical GRAD $\delta f_i \propto C_i p^2$

– Typeset by Foil $T_{\!E\!}X$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

Au+Au, b=7 fm - without resonance decays FULL dynamical $\delta f_i \propto \chi_i(p)$

– Typeset by FoilT $_{E}X$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

Au+Au, b=7 fm - without resonance decays Dynamical GRAD $\delta f_i \propto C_i p^2$

– Typeset by FoilT $_{E}X$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

Au+Au, b=7 fm - without resonance decays FULL dynamical $\delta f_i \propto \chi_i(p)$

significant reduction of $\pi - p$ splitting at $T_{switch} = 140$ and 165 MeV smaller viscous suppressions at higher momenta compared to Grad ansatz

[–] Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012

Summary

- We have a new, tested radiative $3 \leftrightarrow 2$ on-shell transport solver MPC/Grid. Results with pQCD matrix elements soon.
- Identical particle results from viscous hydrodynamics are commonly obtained with unphysical assumptions ("democratic Grad" ansatz), ignoring microscopic dynamics in hadron gas.

From a dynamical freezeout approach, viscous corrections for protons are smaller than for pions, and in general viscous effects are weaker at moderate momenta, than with the democratic Grad prescription.

• more work to be done on both fronts

... see update at Quark Matter 2012

 $E v \chi lpha
ho \iota \sigma \tau \dot{\omega}!$

– Typeset by FoilT $_{\!E\!X}$ – D. Molnar @ Ned/TURIC, Jun 25-30, 2012