Influence of a realistic medium description and fluctuations on heavy quark observables

Marlene Nahrgang

SUBATECH, Nantes & FIAS, Frankfurt

NeD and TURIC, June 2012

with Pol Bernard Gossiaux, Klaus Werner, Jörg Aichelin

Medium induced energy loss of heavy quarks RHIC results from Phenix

heavy quarks significantly interact with the QGP medium

nuclear modification factor:

$$R_{AA} = rac{\mathrm{d}\sigma_{AA}/\mathrm{d}p_t}{N_{\mathrm{bin}}\mathrm{d}\sigma_{\mathrm{pp}}/\mathrm{d}p_t}$$

- low p_t: thermalization of heavy quarks with the medium?
- high p_t: elastic collisions + gluon bremsstrahlung ⇒ energy loss
- v₂ of heavy quarks from *p*_t-broadening and flow of the medium

no distinction between c and b quarks

Medium induced energy loss of heavy quarks

first preliminary LHC results from ALICE/CMS

Opportunities:

- distinguish between c and b quarks
- clarify contribution from collisional and radiative energy loss?

Setup for heavy quark propagation

- production process
- cold nuclear matter effects
- interaction with the medium
- medium properties
- hadronization process
- medium modifications

MC@sHQ (remember Pol's talk!)

P. B. Gossiaux, R. Bierkandt and J. Aichelin, Phys. Rev. C 79 (2009) 044906, P. B. Gossiaux and J. Aichelin, Phys. Rev. C 78 (2008) 014904

Setup for heavy quark propagation

initialization:

production process

effects

cold nuclear matter

propagation in the medium and hadronziation:

- interaction with the medium
 - medium properties
- hadronization process
- medium modifications

MC@sHQ (remember Pol's talk!) + EPOS (remember Klaus' talk!)

P. B. Gossiaux, R. Bierkandt and J. Aichelin, Phys. Rev. C 79 (2009), P. B. Gossiaux and J. Aichelin, Phys. Rev. C 78 (2008))

K. Werner, I. .Karpenko, M. Bleicher, T. Pierog and S. Porteboeuf-Houssais, arXiv:1203.5704 [nucl-th])

EPOS initial conditions

- multiple scattering approach
- elementary scattering corresponds to parton ladder
- parton ladder is identified with a flux tube
- high density of flux tubes in AA collisions
- string breaking due to q
 q
 q
 production
- slow string segments, far from the surface, are mapped to fluid dynamic fields

K. Werner, I. .Karpenko, M. Bleicher, T. Pierog and S. Porteboeuf-Houssais, arXiv:1203.5704 [nucl-th])

EPOS - comparison with data

EPOS describes various experimental results from the light sector

- transverse momentum distributions (π, K, p) for different centralities
- pseudorapidity distributions of charged particles for different centralities
- charged particle R_{AA}
- dihadron correlations, ridge at high p_t
- flow coefficients
- Λ/K ratio

 \Rightarrow fluid dynamic medium to use as a background for the propagation of heavy quarks!

EPOS - medium evolution

- non-viscous fluid dynamic evolution
- equation of state from lattice

(Wuppertal-Budapest)

temperature evolution

Pb+Pb at 2.76 TeV, central

radial velocity

Initialization of heavy quarks

initialized at the spatial points of nucleon-nucleon collisions in EPOS:

 \leftarrow

ini. energy density

NN coll. distribution

- momentum distribution (FONLL)
- relative contribution of b to c quarks from FONLL : $\sigma_{\bar{b}b}/\sigma_{\bar{c}c} = 7 \cdot 10^{-3}$

M. Cacciari and P. Nason PRL 89 (2002); M. Cacciari et al. JHEP 0407 (2004)

Collisional energy loss

Running coupling and Debye mass

IR divergence of t-channel diagram \rightarrow regulator in the gluon propagator:

$$\frac{1}{t}
ightarrow \frac{1}{t-\mu^2}$$

 $\mu \simeq$ Debye screening mass m_D

(A. Peshier, hep-ph/0601119; lattice data: O. Kaczmarek)

define an effective running $\alpha_{eff}(Q^2)$ coupling, which is finite in the infrared Dokshitzer (2002)

replace in the gluon propagator:

$$\frac{\alpha_{\rm eff}(t)}{t} \rightarrow \frac{\alpha_{\rm eff}(t)}{t - \kappa \tilde{m}_D^2}$$

$$\kappa m_D^2 \text{ with the } \frac{\frac{dE}{dx}[GeV/fm]}{100}$$
In calibrating alculation
$$\frac{20}{5} \frac{1}{10} \frac{100}{50} \frac{1}{100} \frac{1}{5} \frac{1}{100} \frac{1}{50} \frac{1}{50} \frac{1}{100} \frac{1}{50} \frac$$

A. Peshier, PRL 97 (2006); S. Peigne and A. Peshier PRD 77,

4 GeV

 $p_Q[\text{GeV}]$

T=2 GeV

5001000

- choose $\mu^2 = \kappa m_D^2$ with the self-consistent m_D
- $\kappa \simeq 0.11$ from calibrating $\frac{dE}{dx}$ to HTL calculation (Bratten-Thoma).

Radiative energy loss

- radiative energy loss (gluon bremsstrahlung) expected to be dominant for large E
- incoherent radiation: Gunion-Bertsch spectrum
- QCD-analogon to the LPM-effect (coherent radiation): BDMPS-Z decoherence of radiated gluon and original parton by transverse kicks from the medium
- influence of gluon damping (remember Marcus' talk!)

- form D/B mesons at the end of the evolution by either coalescence or fragmentation
- physical picture: b quarks at rest in a fluid cell hadronize ONLY by coalescence

coalescence probability:

- heavy quarks which do not coalesce fragment M. Cacciari et al., PRL 95 (2005)
- subsequent decay into electrons
- uncertainty in p_t where b starts to dominate

Hadronic bound states above Tc

assumption: no energy loss in the hadronic phase energy loss is reduced if there are hadronic bound states above $T_c = 155$ MeV.

Ratti et al., Phys. Rev. D 85 (2012) 014004

use an exponential decrease of the fraction of partonic degrees of freedom

(caution: thermalized heavy quarks should form hadronic bound states at even larger temperatures, successive formation and dissociation of D- and B- mesons in the medium (Adil/Vitev, van Hees), ...)

RHIC RAA quarks

- Hadronic bound states above T_c reduce the energy loss at high p_t.
- Reduction of the interaction with the medium leads to more thermalization...

RHIC - influence of initial radial velocity

central, R_{AA} of c quarks, no reduction due to hadronic bound states

- Highly sensitive to the initial flow in the low- and intermediate-pt regime!
- A reduction of the interaction also reduces the sensitivity to flow.

RHIC - influence of averaged initial conditions

central, c quarks, no reduction due to hadronic bound states

- More thermalization for smoother initial conditions!
- More quenching in smoother initial conditions at high-p_t?
- Enhanced flow for averaged initial conditions.

RHIC R_{AA} c quarks - time evolution

- At high p_t : R_{AA} builds up in the high-T phase.
- Low p_t R_{AA} changes in the later evolution when the interaction is not reduced.

only fragmentation

below the data for intermediate p_t

slightly above the data for intermediate p_t

RHIC R_{AA} heavy flavor electrons

electrons from D and B (including $D \rightarrow B \rightarrow e$)

• quite good agreement with the data

RHIC v₂ heavy flavor electrons

- Stronger flow when the interaction is not reduced.
- Probably strong influence on medium properties...

LHC R_{AA} D and B mesons

with the same ingredients in MC@sHQ as for RHIC warning: no nuclear shadowing implemented so far...

• Smaller effect of hadronic bound states above *T_c*.

• Too much quenching at LHC.

LHC v_2 D and B mesons

• Hadronic bound states above T_c reduce the flow.

- heavy quark propagation (MC@sHQ) coupled to fluid dynamic expansion (EPOS)
- effect of hadronic bound states above T_c at all p_t:
 - less quenching at large pt
 - less sensitivity to flow at low pt
 - effect stronger at RHIC than at LHC
- low- and intermediate-p_t regime affected by medium properties, in particular initial conditions
 - initial radial velocity
 - initial fluctuations

many effects and observables to be studied!