

Open heavy flavor at RHIC and LHC

Jan Uphoff

with O. Fochler, Z. Xu and C. Greiner

Based on Phys. Rev. C 84, 024908 (2011) and arXiv:1205.4945

NeD &TURIC, Hersonissos, Crete, Greece 28 June 2012

Motivation

Motivation

Motivation

BAMPS: Boltzmann Approach of MultiParton Scatterings

- 3+1 dimensional, fully dynamic parton transport model
- solves the Boltzmann equations for on-shell partons with pQCD interactions

$$\left(\frac{\partial}{\partial t} + \frac{\mathbf{p}_i}{E_i}\frac{\partial}{\partial \mathbf{r}}\right) f_i(\mathbf{r}, \mathbf{p}_i, t) = \mathcal{C}_i^{2 \to 2} + \mathcal{C}_i^{2 \leftrightarrow 3} + \dots$$

Z. Xu & C. Greiner, Phys. Rev. C71 (2005) Phys. Rev. C76 (2007)

Divide collision zone into cells

Using stochastic method

$$P_{2\to 2} = v_{\rm rel} \frac{\sigma_{2\to 2}}{N_{\rm test}} \frac{\Delta t}{\Delta^3 x}$$

Testparticles to increase statistics

BAMPS with N_{flavor} = 3+2

Implemented processes

Heavy Flavor $g + g \to Q + \bar{Q}$ $Q + \bar{Q} \to g + g$ $q + \bar{q} \to Q + \bar{Q}$ $Q + \bar{Q} \to q + \bar{q}$ $g + Q \rightarrow g + Q$ $q + \bar{Q} \to q + \bar{Q}$ $q + Q \rightarrow q + Q$ $q + \bar{Q} \to q + \bar{Q}$ $g + J/\psi \rightarrow c + \bar{c}$ $c + \bar{c} \rightarrow g + J/\psi$

$g g \to g g$ $g g \to q \bar{q}$ $g \bar{g} \to q \bar{q}$	and	$2 \rightarrow 2$
$\begin{array}{c} q \ q & \gamma \ g \ g \\ q \ g \rightarrow q \ g \\ q \ \overline{q} \rightarrow q \ \overline{q} \end{array}$	and	$\bar{q} q \to \bar{q} q$ $\bar{q} g \to \bar{q} g$
$q q \rightarrow q q$ $q q' \rightarrow q q'$	and and	$\bar{q} \bar{q} \to \bar{q} \bar{q}$ $q \bar{q}' \to q \bar{q}'$
$g g \leftrightarrow g g g$		2 ↔ 3
$\begin{array}{c} q \ g \leftrightarrow q \ g \ g \\ q \ \overline{q} \leftrightarrow q \ \overline{q} \ \overline{q} \end{array}$	and	$\bar{q} g \leftrightarrow \bar{q} g g$
$q q \leftrightarrow q q g$ $q q' \leftrightarrow q q' g$	and and	$\bar{q}\bar{q} \leftrightarrow \bar{q}\bar{q}g$ $q\bar{q}' \leftrightarrow q\bar{q}'g$

Heavy-ion collision at LHC

BAMPS simulation of QGP phase at LHC at $\sqrt{s_{NN}} = 2.76$ TeV

Visualization framework courtesy MADAI collaboration, funded by the NSF under grant# NSF-PHY-09-41373

Heavy quark scattering

Leading order perturbative QCD:

$$g + Q \to g + Q$$
$$q + Q \to q + Q$$

t channel is divergent for small t

$$\frac{1}{t} \to \frac{1}{t - \kappa \, m_D^2}$$

$$\kappa$$
 can be fixed to
$$\kappa = \frac{1}{2e} \approx 0.184$$

by comparing dE/dx to HTL result beyond logarithmic accuracy A. Peshier, arXiv:0801.0595 [hep-ph]

P.B. Gossiaux, J. Aichelin, Phys.Rev.C78 (2008)

Heavy quark scattering

RHIC results

Heavy quark elliptic flow v₂ at RHIC

only elastic heavy quark processes

JU, Fochler, Xu, Greiner arXiv:1205.4945

 2

Heavy quark R_{AA} at RHIC

Influence of formation time

LHC results

Heavy flavor electron R_{AA} at LHC

Muon R_{AA} at forward rapidity at LHC

D meson R_{AA} at LHC

D meson v₂ at LHC

Non-prompt J/psi R_{AA} at LHC

v₂ predictions for the LHC

v₂ predictions for the LHC

In accordance to scalar QCD result from Gossiaux, Aichelin, Gousset, Guiho, J.Phys.G37 (2010)

Gunion-Bertsch matrix element generalized to heavy quarks:

$$\left|\overline{\mathcal{M}}_{gQ \to gQg}\right|^2 = 12g^2 \left|\overline{\mathcal{M}}_0^{gQ}\right|^2 \left[\frac{\mathbf{k}_\perp}{k_\perp^2 + x^2M^2} + \frac{\mathbf{q}_\perp - \mathbf{k}_\perp}{(\mathbf{q}_\perp - \mathbf{k}_\perp)^2 + x^2M^2}\right]^2$$

$$q, p_2$$

 Q, p_1

Can radiative processes account for K~3.5?

 $a + O \rightarrow a + O + a$

g, k

5000

Energy loss in static medium

Fixed coupling, without LPM effect

Heavy quark R_{AA} at RHIC with $2{\rightarrow}3$

Full space-time evolution of QGP with charm and bottom quarks

- Running coupling and improved Debye screening yield results that can explain experimental v_2 and R_{AA} at RHIC if K=3.5 is introduced
- Good agreement with D meson v₂ at LHC
- RAA of D mesons, non-prompt J/psi and muon at LHC underestimated
- Preliminary results with $2 \rightarrow 3$ in full cascade are promising

Further details in Phys. Rev. C 84, 024908 (2011) and arXiv:1205.4945

Future tasks:

- Further study of radiative heavy quark scattering in full cascade
- J/ ψ calculations at RHIC and LHC

Thank you for your attention.

Charm R_{AA} at RHIC

Only charm quarks (no heavy flavor electrons!) for better comparison

Charm elliptic flow v₂ at RHIC

Only charm quarks (no heavy flavor electrons!) for better comparison

Heavy quark R_{AA} at RHIC

Heavy quark scattering cross section

Heavy quark scattering

Fragmentation and Decay

Peterson fragmentation

Peterson et al., Phys. Rev. D27 (1983)

$$D_{H/Q}(z) = \frac{N}{z\left(1 - \frac{1}{z} - \frac{\epsilon_Q}{1 - z}\right)^2} \qquad z = \frac{|\vec{p}_H|}{|\vec{p}_Q|} \qquad \epsilon_c = 0.05$$

Dead cone effect

$$\left|\overline{\mathcal{M}}_{gQ \to gQg}\right|^2 = 12g^2 \left|\overline{\mathcal{M}}_0^{gQ}\right|^2 \left[\frac{\mathbf{k}_\perp}{k_\perp^2 + x^2M^2} + \frac{\mathbf{q}_\perp - \mathbf{k}_\perp}{(\mathbf{q}_\perp - \mathbf{k}_\perp)^2 + x^2M^2}\right]^2$$

LPM effect

 $2 \rightarrow 3$ only allowed if mean free path of jet larger than formation time of radiated gluon

Charm production in the QGP at LHC

GOETH

UNIVE

FRANKFURT AM MAIN

Heavy quark elliptic flow v₂ at RHIC

Heavy quark elliptic flow v₂ at RHIC

Heavy-ion collision at LHC

BAMPS simulation of QGP phase at LHC at $\sqrt{s_{NN}} = 2.76$ TeV

Visualization framework courtesy MADAI collaboration, funded by the NSF under grant# NSF-PHY-09-41373