Coupled-channel unitarized theory in matter: strangeness and charm in the nuclear medium

Laura Tolos

Instituto de Ciencias del Espacio (ICE)

NeD-TURIC 2012 Hersonissos, Crete, Greece, June 25-30, 2012

Self-consistent coupled-channel unitarized theory in matter: meson-baryon case

Strange mesons: K, K & K*

- In-medium properties of K and K mesons
- K* properties in nuclear matter

in collaboration with D. Cabrera, R. Molina, A. Ramos and E. Oset

Experimental scenarios

Kaon condensation in neutron stars

Kaplan and Nelson '86,...

GSI data (KaoS/FOPI/..)

Foerster et al (KaoS) '07, Crochet et al (FOPI)'00, Wisniewski et al (FOPI) '00, Fuchs'06,..

In-medium theoretical models for kaons

- Relativistic mean field models Schaffner et al '94; ..
- Phenomenological models Friedman and Gal '07; ...

 $U_{\text{K-}}(\rho_0)$ ~ -100 to -200 MeV and $U_{\text{K}}(\rho_0)$ ~ 30 MeV

- Unitarized theories in coupled-channels using meson-exchange models or chiral dynamics U_{κ-}(ρ₀) ~ -50 to -80 MeV and U_κ(ρ₀) ~ 30 MeV
 - •s-wave KN interaction governed by $\Lambda(1405)$

attraction due to modified $\Lambda(1405)$ in the medium^{1,2,3} using a self-consistent coupled-channel approach^{3,4,5}:

•bound K⁻ states by 30-60 MeV but with comparable widths 3,5 •and $\Lambda(1405)$ is a superposition of two states⁶

•*p-wave* (and beyond) contributions to KN interaction^{5,7}

not important for atoms but important for HIC (large momentum)⁸

¹Koch '94; Waas et al, '97 ²Lutz '98; Schaffner-Bielich et al, '00 ³Ramos and Oset '00 ⁴Kaiser et al '97;Oset and Ramos '98; Lutz et al '02 ⁵LT et al '01; LT et al '02
⁶Jido et al '03; Magas et al '05
⁷Jido et al '02; LT et al '06; Lutz et al '02; LT et al '08; Lutz et al '08
⁸LT et al '03; Cassing et al '03

Kaons in dense nuclear matter: Selfconsistent coupled-channel formalism

K meson The model generates dynamically the $\Lambda(1405)$

LT, Cabrera and Ramos, PRC 78 (2008) 045205

K meson

K meson

Strangeness production at GSI (KaoS)

Foerster et al (KaoS) '07

E/A [MeV]

Fuchs et al '01

1.0

1.2

E_{lab} [GeV]

20

soft EOS
 hard EOS

KaoS

1.4

2 p/p_

1.6

From systematics of the experimental results and detailed comparison to transport model calculations:

K⁺ probe a soft EoS

IQMD with KN pot.

IOMD w/o KN pot

0.2

к*

ĸ

0.4 E_{c.m.}-m₀c²[GeV]

 $\begin{array}{ccc} \mathrm{E} \ \mathrm{d}^3 \mathrm{d} \mathrm{d} \mathrm{d}^3 \left[\mathrm{barn} / (\mathrm{GeV}^2 \ \mathrm{c}^{\cdot 3}) \right] \\ \mathrm{d} & \mathrm{d} & \mathrm{d} & \mathrm{d} \\ \mathrm{d} & \mathrm{d} & \mathrm{d} & \mathrm{d} \end{array}$

10

Au+Au, 1.5AGeV θ_{c.m}=90°±10°

• K⁺ and K⁻ yields are $_{1}$ coupled by strangeness exchange: $NN \rightarrow K^{+}YN$

 $K^-N \Leftrightarrow \pi Y$

 $\left(M_{K\text{+}}/A\right)_{Au+Au}/\left(M_{K\text{+}}/A\right)_{C+C}$

5

4

3

0.8

- K⁺ and K⁻ exhibit different freeze-out conditions
- No clear conclusion about medium modifications on K⁻

Recent report on strangeness production close to threshold in proton-nucleus and heavy-ion collisions Hartnack et al. Phys. Rept. 510 (2012) 119

Antikaon production in A+A at SIS within offshell model

BUU transport model with G-matrix for antikaons taking, as bare interaction, Juelich meson-exchange model Cassing, LT, Bratkovskaya, Ramos, NPA 727 (2003) 59

No convincing description of all spectra simultaneously. Need of off-shell transport and a realistic many-body model for antikaons in matter

K* meson in dense matter

Experimentally??

Transparency ratio in $\gamma A \rightarrow K^+ \bar{K}^{*-} A'$

Open charm mesons: D, D & D*

- DN and D*N interactions with HQSS
- D mesic nuclei

in collaboration with C. Garcia-Recio, J. Nieves, O. Romanets and L.L. Salcedo

Experimental scenarios

J/Ψ suppression

Gonin et al (NA50) '96, Matsui and Satz '86

taken from Hirano@CISS07

but also comover scattering

$J/\Psi + \pi \rightarrow D + \overline{D}$

Capella, Ferreiro, Vogt, Wang, Bratkovskaya, Cassing, Andronic..

D-mesic nuclei

Tsushima et al '99, Garcia-Recio et al '10

In-medium theoretical models for open charm

• Predictions from

- QMC model Tsushima et al., PRC 59 (1999) 2824, Sibirtsev et al., EPJA 6 (1999) 351;...
- QCD sum-rule model Hayashigaki, PLB 487 (2000) 96; Weise, Hirschegg'01, 249 Hilger, Thomas and Kaempfer, PRC 79 (2009) 025202 Hilger, Kaempfer and Leupold PRC 84 (2011) 045202; ...
- Chiral model Mishra et al., PRC 69 (2004) 015202; Mishra et al, PRC 79 (2009) 024908;...
- From self-consistent coupled-channel approaches:
 - D meson self-energy with a potential for u-, d- and c- quarks as bare interaction
 LT, Schaffner-Bielich and Mishra, PRC 70 (2004) 025203;
 LT, Schaffner-Bielich and Stoecker, PLB 635 (2006) 85 (finite T!)
 - D and D meson self-energy with a bare interaction saturated by a tchannel vector meson exchange

Lutz and Korpa, PLB 633 (2006) 43

- D meson self-energy using modified t-->0 limit (WT) + scalar-isoscalar attractive term (Σ_{DN}) Mizutani and Ramos, PRC 74 (2006) 065201; LT, Ramos and Mizutani, PRC 78 (2008) 015207
- Incorporate heavy-quark spin symmetry (HQSS)

DN and D*N interactions with HQSS

Spin interactions vanish for infinitely massive quarks. Thus, heavy hadrons come in doublets (unless spin of the light degrees of freedom is zero), which are degenerated in the infinite quark-mass limit. Example: D and D* mesons.

This leads to extend SU(3) WT to a SU(8) model in order to incorporate HQSS (no c cbar pairs)

Garcia-Recio et al., PRD 79 (2009) 054004; LT et al., PRC 80 (2010) 065202; Gamermann et al., PRD 81 (2010) 094016 ; Garcia-Recio et al. , PLB 690 (2010) 369; Garcia-Recio et al. PRC 85 (2012) 025203; Romanets et al. PRD 85 (2012) 114032

Open charm in dense nuclear matter: selfconsistent coupled-channel procedure

SU(8)	SU(6)	SU(3)			Couplings		
irrep	irrep	irrep	M_R	Γ_R	to main channels	Status PDG	J
168	$15_{2,1}$	3 <u>*</u>	2617.3	89.8	$\mathbf{g}_{\Sigma_c \pi} = 2.3, g_{ND} = 1.6, g_{ND^*} = 1.4,$		1/2
					$g_{\Sigma_c \rho} = 1.3$		
168	$15_{2,1}$	3_{4}^{*}	2666.6	53.7	$\mathbf{g}_{\Sigma_c^*\pi} = 2.2, \ g_{ND^*} = 2.0, \ g_{\Sigma_c\rho} = 0.8,$	$\Lambda_c(2625)$	3/2
					$g_{\Sigma_c^* ho} = 1.3$	***	
168	$21_{2,1}$	3 [*] 2	2618.8	1.2	$\mathbf{g}_{\Sigma_c\pi} = 0.3, g_{ND} = 3.5, g_{ND^*} = 5.6,$	$\Lambda_c(2595)$	1/2
					$g_{\Lambda D_s} = 1.4, \ g_{\Lambda D_s^*} = 2.9, \ g_{\Lambda_c \eta'} = 0.9$	***	
120	$21_{2,1}$	3^{*}_{2}	2828.4	0.8	$\mathbf{g_{ND}} = 0.3, \ g_{\Lambda_c \eta} = 1.1, \ g_{\Xi_c K} = 1.6,$		1/2
					$g_{\Lambda D_s^*} = 1.1, \ g_{\Sigma_c \rho} = 1.1, \ g_{\Sigma_c^* \rho} = 1.0,$		
					$g_{\Xi_c^*K^*} = 0.8$		

Simultaneous self-consistent calculation of the D and D* meson self-energies and, hence, spectral functions

LT et al., PRC 80 (2010) 065202

Optical potential for D and D mesons

Strong energy dependence. What about D mesic nuclei?

LT et al., PRC 80 (2010) 065202;

Garcia-Recio et al. , PLB 690 (2010) 369; Garcia-Recio et al. PRC 85 (2012) 025203

D-mesic nuclei

Solving Schroedinger equation...

$$\left[-\frac{\nabla^2}{2m_{\rm red}} + V_{\rm coul}(r) + V_{\rm opt}(r)\right]\Psi = (-B - i\Gamma/2)\Psi$$

Weakly bound D⁰-nucleus states with important widths in contrast to previous QMC models Tsushima et al. PRC 59 (1999) 282) and D⁺ do not bound

Garcia-Recio et al., PLB 690 (2010) 369

Garcia-Recio et al. PRC 85 (2012) 025203

Experimental observation is, though, a difficult task

• problem: pA will have a low production rate

• pA reaction seems more likely to trap a D⁰ in nuclei

FAIR Present and Future

➢it is an exciting moment

>moving from strangeness to charm

➤a lot of theoretical effort is needed

>but in close connection to experiments