

Dynamical freeze-out

Pasi Huovinen J. W. Goethe Universität

Non-equilibrium Dynamics and TURIC Network Workshop June 30, 2012, Hersonissos, Crete

in collaboration with Saeed Ahmad @ Bloomsburg University and Hannu Holopainen @ FIAS

funded by BMBF and EMMI

Freeze-out

- Kinetic equilibrium requires scattering rate >> expansion rate
- ${\scriptstyle \bullet}$ this not valid \rightarrow system behaves as free streaming particles
- ullet momentum distributions cease to evolve ightarrow they "freeze-out"
- criterion: expansion rate equal to scattering rate:

$$\frac{1}{K_n} = \frac{\tau_{\rm scat}^{-1}}{\partial_{\mu} u^{\mu}} \approx 1$$

- $\tau_{
 m scat}^{-1} \propto T^4 \rightarrow$ rapid transition to free streaming
- Approximation: decoupling takes place on constant temperature hypersurface $T = T_{\rm fo}$

- "You cannot describe hadron gas using fluid dynamics?"
 - why not? Prove it!

- "Ideal fluid is a bad model for hadron gas"
 - **•** True, but. . .

- **•** True, but. . .
- how do we know it is a bad model?

- **•** True, but. . .
- how do we know it is a bad model?
- "It doesn't describe the data!!!"

- **•** True, but. . .
- how do we know it is a bad model?
- "It doesn't describe the data!!!"
 - **•** True, but is the reason
 - lack of dissipation?
 - bad freeze-out description?
 - something else?

- **•** True, but. . .
- how do we know it is a bad model?
- "It doesn't describe the data!!!"
 - **•** True, but is the reason
 - lack of dissipation?
 - bad freeze-out description?
 - something else?
- viscous hydro has freeze-out too!

"Why not to use a hybrid model?"

- sampling distorts the particle distributions
- results depend on switching criterion!
 - switch at $K_n = K_{n,sw}$?

Dynamical criterion

• need to evaluate

$$\frac{1}{K_n} = \frac{\tau_{\text{scat}}^{-1}}{\partial_\mu u^\mu}$$

- $\partial_{\mu}u^{\mu}$ known from hydro
- τ_{scat}^{-1} ?

Dynamical criterion

need to evaluate

$$\frac{1}{K_n} = \frac{\tau_{\text{scat}}^{-1}}{\partial_\mu u^\mu}$$

- $\partial_{\mu} u^{\mu}$ known from hydro
- τ_{scat}^{-1} ?
 - Prakash *et al.*, Phys. Rept. 227, 321 (1993): Parametrization: Daghigh & Kapusta, Phys. Rev. D 65, 064028 (2002)

$$\tau_{\pi\pi}^{-1}(T) \approx 16 \left(\frac{T}{100 \text{ MeV}}\right)^4 \text{MeV}$$

• pions only, chemical equilibrium

Scattering rates

- evaluate scattering rate of pions in thermal hadron gas
 - number of scatterings: $N = F_1 N_2 \sigma_{12} = n_1 |\vec{v}_{12}| N_2 \sigma_{12}$

$$-|\vec{v}_{12}| = \sqrt{(s - s_a)(s - s_b)}/(2E_aE_b)$$

where $s_a = (m_1 + m_2)^2$ and $s_b = (m_1 - m_2)^2$

- fold over thermal distributions
- sum over all scattering partners
- scatterings per pion \rightarrow divide by pion density

$$\tau_{\text{scat}}^{-1} = \frac{1}{n_{\pi}(T,\mu_{\pi})} \sum_{i} \int d^{3}p_{\pi} d^{3}p_{i} f_{\pi}(T,\mu_{\pi}) f_{i}(T,\mu_{\pi}) \frac{\sqrt{(s-s_{a})(s-s_{b})}}{2E_{\pi}E_{i}} \sigma_{\pi i}(s)$$

• what is $\sigma_{\pi i}$?

Cross sections

- as in UrQMD:
 - $\sigma_{\pi i}(s)$ for resonance formation using Breit-Wigner

$$\sigma_{\pi i}(s) = \sum_{R} \sigma_{\pi i \to R}(s)$$

- estimate $\sigma_{\pi m}(s)$ for elastic π -meson scattering
- \Rightarrow check that the result fits the cross section data

Cross sections

$$\sigma_{\pi i \to R}(s) = \frac{2S_R + 1}{(2S_\pi + 1)(2S_i + 1)} \frac{\pi}{p_{\rm CMS}^2} \frac{\Gamma_{R \to \pi i}(\sqrt{s}) \Gamma_{tot}(\sqrt{s})}{(m_R - \sqrt{s})^2 + \Gamma_{tot}^2(\sqrt{s})/4}$$

where

• S_j is spin

- $p_{\rm CMS}$ is particle momenta in CMS
- Γ_{tot} and $\Gamma_{R \to \pi i}$ total and partial decay widths:

$$\Gamma_{R \to \pi i}(M) = \Gamma_R^{\pi i} \frac{m_R}{M} \left(\frac{p_{\text{CMS}}(M)}{p_{\text{CMS}}(m_R)}\right)^{2l+1} \frac{1.2}{1 + 0.2 \left(\frac{p_{\text{CMS}}(M)}{p_{\text{CMS}}(m_R)}\right)^{2l}}$$

• Note: scattering partner *i* can be a resonance!

 $\sigma_{\pi^+\pi^-}$

 $\sigma_{\pi^+\pi^-}$

- elastic meson-meson scattering $\sigma_{mm} = 5$ mb
- elastic $\pi\pi$ scattering $\sigma_{\pi\pi} = \sigma_0 e^{-(\sqrt{s}-m_0)^2/w}$ $\sigma_0 = 15$ mb, $m_0 = 0.65$ GeV, w = 0.1 GeV

Effect of particle properties

• masses, widths, branching ratios not same in UrQMD and s95p

Integrals

where a = n/m

• •

Pions only

Scattering with stable particles

Total rate

• chemical equilibrium

• chemical freeze-out at $T_{\rm chem} = 150 \text{ MeV}$

• chemical freeze-out at $T_{\rm chem} = 150 \text{ MeV}$

 $\bullet \tau_0 = 0.6$ fm, sBC

• chemical freeze-out at $T_{\rm chem} = 150 \text{ MeV}$

 $\bullet \tau_0 = 0.2$ fm, eWN+eBC

Conclusions

- constant T freeze-out is an oversimplification
- effect is small but non-negligible
- effect on HBT or δf ?

Pressure vs. Budapest-Wuppertal lattice

