Azimuthal angle correlations in forward dihadron production in pA collisions NeD/TURIC-2012

> Heikki Mäntysaari In collaboration with T. Lappi

> > University of Jyväskylä Department of Physics

> > > 30.6.2012

Introduction

- 2 Dihadron production from CGC
- 3 Double parton scattering

4 Results

Introduction

- Hadron production in forward region probes small-x structure
- Saturation phenomena described by CGC
- Evolution in x: BK equation
- Saturation scale $Q_s =$ characteristic momentum scale
- Additional information to single inclusive spectrum: dihadron production in forward rapidities

Forward-forward

Heikki Mäntysaari (JYFL)

BK equation

Evolution equation in x for dipole-target scattering amplitude N(r)

$$\frac{\partial N(r)}{\partial y} = \frac{\alpha_s N_c}{2\pi} \int d^2 r' \mathcal{K}(r,r') [N(r') + N(r-r') - N(r) - N(r')N(r-r')]$$

r: dipole size.

• Large- N_c result, can also be used to calculate x evolution of unintegrated parton distribution function

Single inclusive hadron production from CGC

$$\mathrm{d}N \sim \int \frac{\mathrm{d}z}{z^2} x f(x, Q^2) \tilde{S}\left(\frac{p_T}{z}, y\right) D(z, Q^2)$$

xf: PDF, \tilde{S} : FT of 1 - N, N dipole amplitude, Vacuum FF (DSS)

Dilute-dense collision

- x-evolution: rcBK, requires IC.
- Fit to HERA data (AAMQS): parameter-free description of STAR $p + p \rightarrow \pi^0 + X$ data
- Nuclear target: larger Q²_{s0} (only free parameter).

Data: STAR, nucl-ex/0602011

Heikki Mäntysaari (JYFL)

- Here: choose initial saturation scale such that it fits PHENIX most central R_{dAu} data
- Quite small $Q_{s0}^2 \sim 2Q_{s0,p}^2$ required
- STAR minbias ≈ central PHENIX, but slightly different rapidities
- Uncertainty to dihadron calculation

In forward rapidities $R_{dAu}
e 1$ (validity: $p_T \leq O(10 \text{ GeV})$). LHC pA run?

Azimuthal angle correlations

Two particle collision vs. $\Delta \phi$: away side peak goes away p+p peripheral d+Au central d+Au

Heikki Mäntysaari (JYFL)

Azimuthal angle correlations

CGC description: quark emits a gluon and scatters off the target. Momentum transfer $\sim Q_s \Rightarrow$ explains disappearance of the away side peak

Dihadron production from CGC

CGC calculation by C. Marquet (Nucl.Phys. A796 (2007)):

$$\frac{\mathrm{d}\sigma}{\mathrm{d}^2 k_T \mathrm{d}^2 q_T \mathrm{d}y_q \mathrm{d}y_k} \sim xq(x,\mu^2) \int \frac{\mathrm{d}^2 x}{(2\pi)^2} \frac{\mathrm{d}^2 x'}{(2\pi)^2} \frac{\mathrm{d}^2 b}{(2\pi)^2} \frac{\mathrm{d}^2 b'}{(2\pi)^2} e^{ik_T(x'-x)} e^{iq_T(b'-b)} \\ |\phi^{q \to qg}(x-b,x'-b')|^2 \Big\{ S^{(6)} - S^{(3)} - S^{(3)} + S^{(2)} \Big\}$$

Dependence on *n*-point functions $S^{(n)}$ (n = 2: dipole amplitude), especially $S^{(6)}$

$$S^{(6)}(b, x, x', b') = Q(b, b', x', x)S(x, x') + O\left(\frac{1}{N_c^2}\right),$$

where Q is a correlator of 4 Wilson lines

$$Q(b,b',x',x) = rac{1}{N_{
m c}^2} \langle {
m Tr} \ U(b) U^{\dagger}(b') U(x') U^{\dagger}(x)
angle$$

n > 2: BK evolution equation \rightarrow JIMWLK (=difficult!)

Quadrupole operator

$Q = N_{\rm c}^{-1} \langle \operatorname{Tr} U(b) U^{\dagger}(b') U(x') U^{\dagger}(x) \rangle, \ S = S^{(2)} = N_{\rm c}^{-1} \langle \operatorname{Tr} U(x) U^{\dagger}(x') \rangle$

Motivation for approximations

Dipole amplitude S is easy to obtain from $BK \Rightarrow$ approximation depending only on dipole amplitude is much easier for practical work

Quadrupole operator

$Q = N_{\rm c}^{-1} \langle \operatorname{Tr} U(b) U^{\dagger}(b') U(x') U^{\dagger}(x) \rangle, \ S = S^{(2)} = N_{\rm c}^{-1} \langle \operatorname{Tr} U(x) U^{\dagger}(x') \rangle$

Motivation for approximations

Dipole amplitude S is easy to obtain from $BK \Rightarrow$ approximation depending only on dipole amplitude is much easier for practical work

Approximating the quadrupole Q

- Naive Large- $N_c Q(b, b', x', x) = \frac{1}{2}[S(x, b)S(x', b') + S(x, x')S(b, b')]$ previous phenomenology: w.o. inelastic contribution S(x, x')S(b, b')
- Gaussian approximation (and large- $N_{
 m c}$ limit)

Gaussian approximation: assume that the correlators of the color charges are Gaussian \Rightarrow depends only on two-point functions

• We use the full Gaussian approximation which includes the inelastic contribution

Comparison with full JIMWLK evolution

• Gaussian approximation is accurate, Naive Large- N_c is not.

Heikki Mäntysaari (JYFL)

Azimuthal angle correlations

Large $N_{\rm c}$ vs finite- $N_{\rm c}$

Preliminary numerical results

- Finite- $N_{
 m c} pprox$ Gaussian Large- $N_{
 m c}$
- Naive Large-N_c: narrower and smaller back-to-back peak
- Different pedestal

Heikki Mäntysaari (JYFL)

Background (pedestal) contribution to coincidence probability: two hadrons are produced independently

Double parton scattering

DPS in CGC framework: $S^{(6)}$ contains IR divergent contribution (gluon emitted far away from the quark), DPDF should cancel

$$\sim x f(x) \left[\int^{\Lambda} \mathrm{d}^2 n |\psi(n)|^2
ight] \tilde{S}_A(k) \tilde{S}(q),$$

for $\Lambda \ll k, q, \psi$ is the splitting function $q \rightarrow qg$. \tilde{S} : FT of S. • Part of "inelastic contribution" (neglected previously)

Double parton scattering

How to calculate DPS in CGC?

- Remove IR divergent contribution from $S^{(6)}$ (\Rightarrow dependence on cutoff $\Lambda \sim \Lambda_{QCD}$)
- (a) and (c): assume DPDF $f(x_1, x_2) \sim f(x_1)f(x_2)$ with kinematical constraint $x_1 + x_2 < 1$
- (b): (single inclusive)², dominates in forward rapidities

Preliminary numerical results

Comparison with PHENIX pedestal height

- $1.1 \,\mathrm{GeV} < p_{T,trig} < 1.6 \,\mathrm{GeV}$: 0.11 (exp. 0.18)
- $1.6 \,\mathrm{GeV} < p_{T,trig} < 2 \,\mathrm{GeV}$: 0.086 (exp. 0.16)

Correct systematics and order of magnitude.

Theoretical uncertainties

• Dependence on cutoff in correlated dihadron production

•
$$Q_{s0}^2 = ?$$

K-factors?

Results: Coincidence probability

Preliminary numerical results

- Good description of central PHENIX data (pedestal from exp. data)
- Gaussian large-Nc approximation

IC: $\mathsf{MV}^\gamma,~Q_s^2=0.33\,\mathrm{GeV}^2,$ data: <code>PHENIX [1105.5112]</code>

Heikki Mäntysaari (JYFL)

Azimuthal angle correlations

- Dihadron production in forward rapidities: detailed study of small-x structure and saturation phenomena
- Previously used "naive Large- N_c " approximation is not very accurate, "Large- N_c Gaussian" is, effect on away-side peak
- DPS contribution is not completely separated but included in six-point function
- We obtain good description of the $\Delta\phi$ dependence of the PHENIX data and order-of-magnitude result for the DPS
- LHC forward R_{pA} ja dihadron correlation results will be interesting
- Work continues...