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Motivation 

Two Particle Correlations: 
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pairs = singles2 + correlations 
 

Sources of Correlation: 

Space   Momentum 

• Geometry (global, long range) 

• Same source (local, long range) 

Other  + “non-floiw” 

• Momentum conservation (long range) 

• Jets (short range) 

• Resonance decays (short range) 

• … 

Pair Distribution 

Can correlations distinguish 

lumpy vs. smooth initial 

conditions? 

Borghini, 
Dinh, 
Ollitrault 

nucl-th/1107.3317 

nucl-th/1205.1218 



Correlations and Fluctuations 

correlations = pairs - singles2 
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Independent of geometry. 

Independent of flow. 

Multiplicity Fluctuations: 
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GM, Gavin nucl-th/1107.3317 

Non-zero values indicate 

non-Poissonian behavior 
Influence of “lumps”:  r (p1,p2) ≠ 0 



Transverse Momentum Fluctuations 

pt covariance:  

Fluctuations  Correlations      

Independent of geometry and anisotropic flow, 

but not average expansion.      

STAR nucl-ex/0504031; Gavin nucl-th/0308067 
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Influence of “lumps”: Correlations, r (p1,p2), modified by transverse 

expansion based on origin.. 



Momentum Correlation Function 

Blast wave expansion: 

• Normalized Boltzmann 

distribution 

 

 

 

• Eccentricity e characterizes 

elliptic geometry.  

• v and T Average values from 

spectra  
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Local equilibrium hydro 

evolution + Cooper-Frye 

freeze out 
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Flux Tubes and Correlations 

Spatial correlations: 

 

 

• Density “lumps” emerge from flux tubes. 

• Correlated partons from same flux tube 

• Flux tube size << RA   

• Average all flux tube distributions  
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Flux Tubes in Glasma 

Long range Glasma fluctuations: 

Depends only on the saturation scale, Qs. 
 
Dumitru, Gelis, McLerran & Venugopalan; 
Gavin, McLerran & GM 
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Correlations of NFT Flux Tubes : 

Fluctuations in tube number  
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Kharzeev & Nardi 

Gluon Rapidity Density 



Multiplicity Fluctuations in Glasma 
Glasma prediction: 

Fix k using ridge 

analysis in 200 GeV 

Au+Au 

Negative binomial 

distribution  

Gelis, Lappi & McLerran  
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Dumitru, Gelis, McLerran & 
Venugopalan; 
Gavin, McLerran & GM 

1 NBDkR

GM, Gavin nucl-th/1107.3317 



pt Fluctuations in Glasma 

Momentum fluctuations 

Local momentum excess 
averaged over spatial 
geometries. 

Gavin, GM. nucl-th/1107-3317 

• Blast wave f (p,x) 

• Same scale factor  

• Glasma energy 

dependence  
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Anisotropic Flow 
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Initial State Configuration 

Final State Momentum 

Fourier Flow Coefficient: 
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Two-particle coefficient: 

no reaction plane needed 



Anisotropic Flow 
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Initial State Configuration 

Final State Momentum 
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Fourier Flow Coefficient: 

Two-particle coefficient: 

no reaction plane needed 



Cumulant Expansion 
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Pair Distribution: 

Two-particle coefficient: 

Correlated Part: 

Borghini, Dinh, Ollitrault 

vn factorization is a signature of flow if n = 0 

• <vn>2 = reaction plane correlations 

• 2
n = other correlations 

• vn{4}    <vn> 
Borghini, Dinh, Ollitrault; 

Voloshin, Poskanzer, 
Tang, Wang 
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Correlation Mechanism 

Initial State Configuration Final State Momentum 

 212 , pp 212 , xxn

Final state momenta are 

correlated to initial position.  

• Reaction plane 

• Common origin 

• Neglect short range correlations 

 21, ppr

Influence of “lumps”:  

• Arbitrary event shapes. 

• Transverse expansion modifies 

correlations based on origin.. 



Elliptic Flow 

• Geometry – model input  

 Dashed line: Blast Wave  vn{4} 

  
• Neglect “non-flow” 

 
• Calculated fluctuations 

 
 
 
 
 
 
 
 
 

• Energy dependence from R 

 

Flow and fluctuations: 

   
2

42
22

2 nn
n

vv 


 
 

  


 21
212 cos
12

,
pp

pp
ddn

NN

r
n

GM, Gavin nucl-th/1205.1218 



v4 

• Geometry – model input  

 Dashed line: Blast Wave  vn{4} 

  
• Neglect “non-flow” 

 
• Calculated fluctuations 

 
 
 
 
 
 
 
 
 

• Energy dependence from R 

 

Flow and fluctuations: 

   
2

42
22

2 nn
n

vv 


 
 

  


 21
212 cos
12

,
pp

pp
ddn

NN

r
n



Elliptic Flow Fluctuations 

Coefficient of variation: 
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Voloshin, Poskanzer, Tang, Wang 
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Caution:  is technically not the variance 



Flow Fluctuations and v3 

Flow Fluctuations: 

• STAR  v3{4} = 0  

• Energy dependence from R 

 

• Parameterized ALICE v3{4}  

 

• A more realistic FT is needed. 
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v3 contributions without triangular flow 



Summary: 
Correlations 

Flow 

Fluctuations 

• Multiplicity fluctuations R. – only 

depends on the existence of density 

lumps. 

• Momentum fluctuations  < pTpT > - 

from density lumps and average 

transverse expansion but not anisotropic 

flow. 

• Flow fluctuations n - from density 

lumps, geometry, and anisotropic flow. 
• The ridge – the same as flow 

fluctuations. 

• All depend on the number and size of 

density lumps  system, energy, and 

centrality dependencies. 

 

Look at them together! 





Long Range Correlations 

A. Bilandzic thesis 

2v• Measurements with rapidity 

gaps do not explain v2{2} and 

v2{4} differences 

 

• Jets, resonance decays, and 

other short range effects 

should be removed 

 

• Long range correlations 

suggest initial state effects. 

 

• Collision energy dependence 

of the ridge should mimic vn 



The Soft Ridge 

•  Only cos  and cos 2 

terms subtracted 

• These terms also contain 

fluctuations 

• Glasma energy dependence 
• R scale factor set in  

 Au-Au 200 GeV 

• Blast wave f (p,x) 

• Difference in peripheral 

STAR→ALICE 
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Four-Particle Coefficients 
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Voloshin, Poskanzer, Tang, Wang 

Borghini, Dinh, and Ollitrault 

Four-particle coefficient: 

Four-Particle Distribution: keep only two-particle correlations 
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vn{4} corrections 
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Four-particle coefficient: 

Will cancel with 
vn{2} terms 

Corrections of order ~1.2% 



R 

• K flux tubes, assume  • K varies event-by-event 

Fluctuations 

per source 

Fluctuations in 

the number of 

sources 

For K sources that fluctuate per event 
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Source Distributions 

• The v2 event plane is correlated with real reaction plane. 

• The v3 event plane is arbitrary. 

• Event averages represent both event shape and event plane fluctuations. 

• Blast wave: Currently captures v3 event plane fluctuations but not 

triangular flow. 

FT

Geometry: probability distribution of 
flux tubes  ~ nuclear thickness  
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Average all flux tube distributions 


