Inhomogeneous Phases in the NJL Model with Vector Interactions

NeD/TURIC Workshop 2014

Marco Schramm

The QCD Phase Diagram

(GSI)

Effective Model

Nambu-Jona-Lasinio model

- Shares chiral symmetry with QCD
- Order parameter: chiral condensate $\langle\bar{q} q\rangle$
- Related to constituent quark mass
- In this work: include vector interactions
- important in similar models for nuclear matter (Walecka model)

- needed for description of vector mesons

Inhomogeneous Phase

- Space dependent order parameter
- Popular for some time
- Pion Condensation
- (Color-) superconductivity
- Studied more recently in lower dimensional models (1+1 D Gross-Neveu model)

Modulated Order Parameter

Different (periodical) modulations possible:

$M(z)=\Delta \nu \operatorname{sn}(\Delta z \mid \nu)$

Sinusoidal modulation

$M(z)=M \cos (q z)$

Chiral Density Wave

$M(z)=M \exp (i q z)$

NJL Model

- NJL Lagrangian

$$
\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \tau^{a} \psi\right)^{2}\right)
$$

NJL Model

- NJL Lagrangian

$$
\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \tau^{a} \psi\right)^{2}\right)-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- additional vector-interaction term

NJL Model

- NJL Lagrangian

$$
\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \tau^{a} \psi\right)^{2}\right)-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- additional vector-interaction term
- Derive thermodynamic properties from grand potential Ω

NJL Model

- NJL Lagrangian

$$
\mathscr{L}=\bar{\psi}(i \not \partial-m) \psi+G_{S}\left((\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \tau^{a} \psi\right)^{2}\right)-G_{V}\left(\bar{\psi} \gamma^{\mu} \psi\right)^{2}
$$

- additional vector-interaction term
- Derive thermodynamic properties from grand potential Ω
- Mean-field approximation

$$
S(\vec{x})=\langle\bar{\psi} \psi\rangle, \quad P(\vec{x})=\left\langle\bar{\psi} i_{5} \tau^{3} \psi\right\rangle, \quad n^{\mu}(\vec{x})=\left\langle\bar{\psi} \gamma^{\mu} \psi\right\rangle
$$

- keep space dependence, but neglect time dependence
- consider only: $\quad n^{\mu}(\vec{x})=n(\vec{x}) g^{\mu 0} \quad$ (density)

Shifted Mass and Chemical Potential

- Shifted mass and chemical potential

$$
M(\vec{x})=m-2 G_{S}(S(\vec{x})+i P(\vec{x})), \quad \tilde{\mu}(\vec{x})=\mu-2 G_{V} n(\vec{x})
$$

Shifted Mass and Chemical Potential

- Shifted mass and chemical potential

$$
M(\vec{x})=m-2 G_{S}(S(\vec{x})+i P(\vec{x})), \quad \tilde{\mu}(\vec{x})=\mu-2 G_{V} n(\vec{x})
$$

- Hamiltonian $\mathscr{H}-\mu=\mathscr{H}_{+} \otimes \mathscr{H}_{-}$

$$
\mathscr{H}_{+}=\left(\begin{array}{cc}
-i \vec{\sigma} \vec{\partial}-\tilde{\mu}(\vec{x}) & M(\vec{x}) \\
M^{*}(\vec{x}) & i \vec{\sigma} \vec{\partial}-\tilde{\mu}(\vec{x})
\end{array}\right)
$$

Shifted Mass and Chemical Potential

- Shifted mass and chemical potential

$$
M(\vec{x})=m-2 G_{S}(S(\vec{x})+i P(\vec{x})), \quad \tilde{\mu}(\vec{x})=\mu-2 G_{V} n(\vec{x})
$$

- Hamiltonian $\quad \mathscr{H}-\mu=\mathscr{H}_{+} \otimes \mathscr{H}_{-}$

$$
\mathscr{H}_{+}=\left(\begin{array}{cc}
-i \vec{\sigma} \vec{\partial}-\tilde{\mu}(\vec{x}) & M(\vec{x}) \\
M^{*}(\vec{x}) & i \vec{\sigma} \vec{\partial}-\tilde{\mu}(\vec{x})
\end{array}\right)
$$

- Demand periodicity in mass and chemical potential function

$$
M(\vec{x})=M\left(\vec{x}+\vec{n}_{i}\right), \quad \tilde{\mu}(\vec{x})=\tilde{\mu}\left(\vec{x}+\vec{n}_{i} / 2\right), \quad i=1,2,3
$$

Shifted Mass and Chemical Potential

- Shifted mass and chemical potential

$$
M(\vec{x})=m-2 G_{S}(S(\vec{x})+i P(\vec{x})), \quad \tilde{\mu}(\vec{x})=\mu-2 G_{V} n(\vec{x})
$$

- Hamiltonian $\quad \mathscr{H}-\mu=\mathscr{H}_{+} \otimes \mathscr{H}_{-}$

$$
\mathscr{H}_{+}=\left(\begin{array}{cc}
-i \vec{\sigma} \vec{\partial}-\tilde{\mu}(\vec{x}) & M(\vec{x}) \\
M^{*}(\vec{x}) & i \vec{\sigma} \vec{\partial}-\tilde{\mu}(\vec{x})
\end{array}\right)
$$

- Demand periodicity in mass and chemical potential function

$$
M(\vec{x})=M\left(\vec{x}+\vec{n}_{i}\right), \quad \tilde{\mu}(\vec{x})=\tilde{\mu}\left(\vec{x}+\vec{n}_{i} / 2\right), \quad i=1,2,3
$$

- Allows Fourier transformation

$$
M(\vec{x})=\sum_{\vec{q}_{k}} M_{\vec{q}_{k}} e^{i \vec{q}_{k} \vec{x}}, \quad \tilde{\mu}(\vec{x})=\sum_{\vec{q}_{k}} \tilde{\mu}_{\vec{q}_{k}} e^{i 2 \vec{q}_{k} \vec{x}}
$$

- wave vector $\vec{q}_{k}: \quad \vec{q}_{k} \vec{n}_{i}=2 \pi N_{k i}, \quad N_{k i} \in \mathbb{Z}$

Grand Potential

Arrive at grand potential

$$
\begin{aligned}
& \Omega_{=} \Omega_{\text {kin }}+\Omega_{\text {cond }} \\
& \Omega_{\text {kin }}=-N_{C} N_{F} \frac{1}{V} \sum_{E_{\lambda}} T \ln \left[2 \cosh \left(\frac{E_{\lambda}}{2 T}\right)\right] \\
& \Omega_{\text {cond }}=\frac{1}{V} \int d^{3} x\left[\frac{|M(\vec{x})-m|^{2}}{4 G_{S}}-\frac{(\tilde{\mu}(\vec{x})-\mu)^{2}}{4 G_{V}}\right]
\end{aligned}
$$

with eigenvalues E_{λ} of \mathscr{H} in momentum space

Grand Potential

Arrive at grand potential

$$
\begin{aligned}
& \Omega_{=}=\Omega_{\text {kin }}+\Omega_{\text {cond }} \\
& \Omega_{\text {kin }}=-N_{C} N_{F} \frac{1}{V} \sum_{E_{\lambda}} T \ln \left[2 \cosh \left(\frac{E_{\lambda}}{2 T}\right)\right] \\
& \Omega_{\text {cond }}=\frac{1}{V} \int d^{3} x\left[\frac{|M(\vec{x})-m|^{2}}{4 G_{S}}-\frac{(\tilde{\mu}(\vec{x})-\mu)^{2}}{4 G_{V}}\right]
\end{aligned}
$$

with eigenvalues E_{λ} of \mathscr{H} in momentum space
$\mathscr{H}_{\vec{p}_{m}, \vec{p}_{m^{\prime}}}=\left(\begin{array}{cc}-\vec{\sigma} \vec{p}_{m} \delta_{\vec{p}_{m}, \vec{p}_{m^{\prime}}}+\sum_{\vec{q}_{k}} \tilde{\mu}_{\vec{q}_{k}} \delta_{2 \vec{q}_{k}\left(\vec{p}_{m}-\vec{p}_{m^{\prime}}\right)} & -\sum_{\vec{q}_{k}} M_{\vec{q}_{k}} \delta_{\vec{q}_{k}\left(\vec{p}_{m}-\vec{p}_{m^{\prime}}\right)} \\ \left.-\sum_{\vec{q}_{k}} M_{\vec{q}_{k}} \delta_{\vec{q}_{k},\left(\vec{p}_{m^{\prime}}\right.}-\vec{p}_{m}\right) & \vec{\sigma} \vec{p}_{m} \delta_{\vec{p}_{m}, \vec{p}_{m^{\prime}}}+\sum_{\vec{q}_{k}} \tilde{\mu}_{\vec{q}_{k}} \delta_{2 \vec{q}_{k},\left(\vec{p}_{m}-\vec{p}_{m^{\prime}}\right)}\end{array}\right)$

Simplify Hamiltonian

- 1D dimensional simple real ansatz: Cosine

$$
M(z)=M \cos (q z), \quad \tilde{\mu}(z)=\tilde{\mu}_{0}+\tilde{\mu}_{1} \cos (2 q z)
$$

- Use crystal properties
- Momenta \vec{p} and \vec{p}^{\prime} only coupled if they differ by integer multiples of q
- construct momenta in modulated direction from reciprocal lattice vector q and vector in the first Brillouin zone k

$$
p=k+m q, \quad m \in \mathbb{Z}
$$

- momenta p and p^{\prime} can only be coupled if $k=k^{\prime}$
- cut matrix at high momenta

$$
|k \pm m q| \leq \Lambda_{M}
$$

Regularization and Determination of Parameters

- kinetic part of grand potential divergent
- apply regularization scheme (Pauli-Villars)
- tune cutoff parameter \wedge and coupling constant G_{S} to empiric values with vanishing bare quark mass $m=0$ (chiral limit),
- treat vector coupling G_{V} as free parameter
- grand potential depends on 4 parameters $M, q, \tilde{\mu}_{0}$ and $\tilde{\mu}_{1}$
- parameters have to fulfill gap equations

$$
\frac{\partial \Omega}{\partial M}=0, \quad \frac{\partial \Omega}{\partial q}=0, \quad \frac{\partial \Omega}{\partial \tilde{\mu}_{0}}=0, \quad \frac{\partial \Omega}{\partial \tilde{\mu}_{1}}=0
$$

Effects of Vector Interactions on the Homogeneous Phase Diagram

- First-order phase transition for vanishing vector coupling
- Rising vector coupling shifts critical end point to lower temperatures
- Hits the zero temperature axis for higher coupling constants
- Phase transition shifted to higher chemical potentials

Mass Amplitude and Wave Number

$$
T=1 \mathrm{MeV}
$$

$G_{V} / G_{S}=0$

- First-order transition for homogeneous case
- Replaced by inhomogeneous region
- Small first-order transition from homogeneous broken to inhomogeneous phase
- Continous decrease in mass amplitude until chiral symmetry is restored

Mass Amplitude and Wave Number

$T=1 \mathrm{MeV}$

- Second-order transition for homogeneous case
- Replaced by inhomogeneous phase
- Density

$$
n(z)=\frac{\mu-\tilde{\mu}_{0}}{2 G_{V}}-\frac{\tilde{\mu}_{1}}{2 G_{V}} \cos (2 q z)=\langle n\rangle-n_{A} \cos (2 q z)
$$

Mass Amplitude and Wave Number

$T=1 \mathrm{MeV}$

Different Modulations

Solitonic Modulations

$$
M(z)=\Delta \nu \operatorname{sn}(\Delta z \mid \nu)
$$

Chiral density wave (CDW)

$$
M(z)=M \exp (i q z)
$$

- For both modulations analytic expression for eigenvalues are known

Different Modulations

Solitonic Modulations

$$
M(z)=\Delta \nu \operatorname{sn}(\Delta z \mid \nu)
$$

Chiral density wave (CDW)

$$
M(z)=M \exp (i q z)
$$

- For both modulations analytic expression for eigenvalues are known
- Both can be extended to vector interactions by restricting to

$$
\begin{aligned}
& n(\vec{x}) \rightarrow \bar{n}=\langle n(\vec{x})\rangle=\text { const. } \\
& \Rightarrow \tilde{\mu}=\mu-2 G_{V} \bar{n}=\text { const. }
\end{aligned}
$$

- Approximation for solitons, but exact for CDW
- Grand Potential

$$
\Omega(T, \mu)=\left.\Omega(T, \mu \rightarrow \tilde{\mu})\right|_{G_{v}=0}-\frac{(\tilde{\mu}-\mu)^{2}}{4 G_{V}}
$$

Comparison of Phase Diagrams and Free Energies at $G_{V} / G_{S}=0.5$

Compare the different modulations:
Sinusoidal: $\quad M(z)=M \cos (q z)$

Comparison of Phase Diagrams and Free Energies at $G_{V} / G_{S}=0.5$

Compare the different modulations:
Sinusoidal: $\quad M(z)=M \cos (q z)$
Solitons: $\quad M(z)=\Delta \nu \operatorname{sn}(\Delta z \mid \nu)$

Comparison of Phase Diagrams and Free Energies at $G_{V} / G_{S}=0.5$

Compare the different modulations:
Sinusoidal: $\quad M(z)=M \cos (q z)$
Solitons: $\quad M(z)=\Delta \nu \operatorname{sn}(\Delta z \mid \nu)$
CDW: $\quad M(z)=M \exp (i q z)$

Comparison of Phase Diagrams and Free Energies at $G_{V} / G_{S}=0.5$

Compare the different modulations:
Sinusoidal: $\quad M(z)=M \cos (q z)$
Solitons: $\quad M(z)=\Delta \nu \operatorname{sn}(\Delta z \mid \nu)$
CDW: $\quad M(z)=M \exp (i q z)$

- Transition to restored phase similar for all modulations
- Solitons most favored but lack self consistency
- CDW favored over sinusoidal modulations
- Not the case without vector interactions

Comparison of Phase Diagrams and Free Energies at $G_{V} / G_{S}=0.5$

Compare the different modulations:
Sinusoidal: $\quad M(z)=M \cos (q z)$
Solitons: $\quad M(z)=\Delta \nu \operatorname{sn}(\Delta z \mid \nu)$
CDW: $\quad M(z)=M \exp (i q z)$

- Transition to restored phase similar for all modulations
- Solitons most favored but lack self consistency
- CDW favored over sinusoidal modulations
- Not the case without vector interactions
\Rightarrow Compare CDW and cosine for different G_{V}

Competition between CDW and Cosine

- Sinusoidal modulation only favored for smaller vector couplings $G_{V} / G_{S}<0.3$

Competition between CDW and Cosine

- Sinusoidal modulation only favored for smaller vector couplings $G_{V} / G_{S}<0.3$
- CDW favored completely for $G_{V} / G_{S} \geq 0.4$

Competition between CDW and Cosine

TECHNISCHE UNIVERSITATT
DARMSTADT

Conclusion and Outlook

- Crystalline phase should be considered
- Inhomogeneous phases can be found with vector interactions
- Explicit modulations of the chemical potential show differences to constant $\tilde{\mu}$
- Sinusoidal modulations only favored at small vector couplings

Conclusion and Outlook

- Crystalline phase should be considered
- Inhomogeneous phases can be found with vector interactions
- Explicit modulations of the chemical potential show differences to constant $\tilde{\mu}$
- Sinusoidal modulations only favored at small vector couplings

Outlook

- Different modulations, e.g. $M(z)=\Delta \nu \operatorname{sn}(\Delta z \mid \nu)$ with known Fourier decomposition
- 't Hooft interactions
- Isospin imbalance \Rightarrow D. Nowakowski's talk tomorrow
- Phononic excitations in inhomogeneous phase

