

QCD-like theories at finite density

4th TURIC Network Workshop

& Non-Equilibrium Dynamics Symposium

Hersonissos, Crete, 9 June 2014

Contents

Introduction

• QCD with Isospin Chemical Potential ↔ Two-Color QCD

N. Strodthoff, B.-J. Schaefer & L.v.S., Phys. Rev. D85 (2012) 074007 K. Kamikado, N. Strodthoff, L.v.S. & J. Wambach, Phys. Lett. B 718 (2013) 1044 N. Strodthoff & L.v.S., PLB 731 (2014) 350

Isospin & Baryon Chemical Potential ↔ Polarised Fermi Gas

• G₂ Gauge Theory at Finite Baryon Density

A. Maas, L.v.S., B. Wellegehausen & A. Wipf, Phys. Rev. D 86 (2012) 111901(R)
B. Wellegehausen, A. Maas, A. Wipf & L.v.S., Phys. Rev. D 89 (2014) 056007

Summary and outlook

Phase Diagram

QCD-like Theories

Functional methods and effective models:

- compare with lattice simulations where there's no sign problem
- apply to ultracold fermi gases

exploit analogies and more experimental data

QED₃ (semimetal-insulator transition, $N_f < 4$), electronic properties of Graphene (half-filling, $N_f = 2$) – SFB 634

Fermion-Sign Problem

sign problem:

$$\left(\operatorname{Det} D(\mu_f)\right)^* = \operatorname{Det} D(-\mu_f)$$

- in general, except if:
 - (a) anti-unitary symmetry $TD(\mu)T^{-1} = D(\mu)^*$ $T^2 = \pm 1$

fermion color representation:Dyson index:(i) pseudo-real $T^2 = 1$ two-color QCD $\beta = 1$ (ii) real $T^2 = -1$ adjoint QCD, or G2-QCD $\beta = 4$

(b) two degenerate flavors with isospin chemical potential

fermion determinant
$$\rightsquigarrow \operatorname{Det}(D(\mu_I)D(-\mu_I))$$
 $\beta = 2$

QCD at finite isospin density

Functional RG (Flow) Equations

Flow Equations for Correlation Functions

• e.g. O(4) linear sigma model:

 $p_0 = -i(\omega + i\varepsilon)$ (retarded)

 $T = \mu = 0$:

Kamikado, Strodthoff, LvS & Wambach, EPJC 74 (2014) 2806

finite T and μ :

Tripolt, Strodthoff, LvS & Wambach, PRD 89 (2014) 034010

Spectral functions

• QM model analytically continued FRG finite T and μ T=10 MeV T=150 MeV T=200 MeV $[\Lambda_{\rm UV}^{-2}]$ $[\Lambda_{\rm UV}^{-2}]$ $\left[\Lambda_{\rm UV}^{-2}\right]$ (5) ρ_{π} ρ_{π} ρ_{σ} 100 100 100 ρ_{π} 6 (2) (3) 15 64 (4) (5) 6 0.01 0.01 0.01 ρ_{σ} ρ_{σ} $-\frac{1}{700} \omega$ [MeV] 10⁻ 10^{-4} $-\frac{1}{700} \omega [MeV] 10^{-4}$ 100 200 300 400 500 600 100 200 300 400 500 600 200 300 0 100 0 400 μ=292 MeV µ=292.8 MeV µ=292.97 MeV $[\Lambda_{\rm UV}^{-2}]$ $[\Lambda_{\rm UV}^{-2}]$ $[\Lambda_{\rm UV}^{-2}]$ ρ_{σ} ρ_{π} $|\rho_{\pi}|$ ρ_{σ} ρ_{σ} ρ_{π} 100 100 100 (2)(4) (6) 6) 0.01 0.01 (4) 0.01 10^{-4} $-\frac{1}{700} \omega [MeV] 10^{-4}$ $\frac{1}{700} \omega \text{ [MeV] } 10^{-4} \frac{1}{0} \frac{1}{50} \frac{1}{100} \frac{1}{150} \frac{1}{200} \frac{1}{250} \frac{1}{250} \frac{1}{100} \frac{1}{150} \frac{1}{200} \frac{1}{250} \frac{1}{100} \frac{1}{150} \frac{1}{100} \frac{1}{1$ 600 500 600 100 200 300 400 500 200 300 400 100 1: $\sigma^* \to \sigma\sigma$, 2: $\sigma^* \to \pi\pi$, 3: $\sigma^* \to \bar{\psi}\psi$, 4: $\pi^* \to \sigma\pi$, 5: $\pi^*\pi \to \sigma$, 6: $\pi^* \to \bar{\psi}\psi$

[Tripolt, Strodthoff, LvS, Wambach, PRD 89 (2014) 034010]

see Arno Tripolt's talk tonight

QM Model with Isospin Chemical Potential

• *N_f* = 2 quarks & mesons with Yukawa coupling:

$$\mathcal{L} = \bar{\psi}(\partial \!\!\!/ + g(\sigma + i\gamma^5 \vec{\pi} \vec{\tau}) - \mu \gamma^0 - \mu_I \tau_3 \gamma^0)\psi + \frac{1}{2} (\partial_\mu \sigma)^2 + \frac{1}{2} (\partial_\mu \pi_0)^2 + U(\rho^2, d^2) - c\sigma + \frac{1}{2} \left((\partial_\mu + 2\mu_I \delta^0_\mu) \pi_+ (\partial_\mu - 2\mu_I \delta^0_\mu) \pi_- \right)$$

• chemical potentials:

JUSTUS-LIEBIG-

UNIVERSITÄT GIESSEN

$$\mu_u = \mu + \mu_I \quad \mu_d = \mu - \mu_I$$

 $\mu \gg \mu_I$: $\mu_I \rightsquigarrow$ imbalance between up and down $\mu_I \gg \mu$: $\mu \rightsquigarrow$ imbalance between up and anti-down

• $\mu = 0$, map to QMD model for QC₂D:

$$N_c: 3 \to 2 \quad (\psi_u, \psi_d) \to (\psi_r, \tau_2 C \bar{\psi}_g) \qquad \mu_I \to \mu$$
$$\pi_+, \pi_- \to \Delta, \Delta^* \qquad \pi_0 \to \vec{\pi}$$

• extended flavor symmetry (Pauli-Gürsey), at $\mu = 0$

 $SU(N_f) \times SU(N_f) \times U(1)$ becomes $SU(2N_f)$

 $N_f = 2$: connects pions and σ -meson with scalar (anti)diquarks.

 $SU(4) \rightarrow Sp(2)$

or
$$SO(6) \rightarrow SO(5)$$

Coset: S^5 5 Goldstone bosons: pions and scalar (anti)diquarks

• color-singlet diquarks (bosonic baryons)

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

Strodthoff, Schaefer & LvS, Phys. Rev. D 85 (2012) 074007

• QMD model phase diagram

250 200 T [MeV] 150 100 QMD with UV, diquark cond. _____ QMD no UV, diquark cond. _____ 50 QMD with UV, chiral QMD no UV, chiral ------0 0.5 1.5 0 2 1 μ [m_π] Strodthoff & L.v.S., PLB 731 (2014) 350

• no low- $T~1^{
m st}$ order transition, no CEP at $\mu\sim 2.5~m_{\pi}$!

Strodthoff, Schaefer & LvS, Phys. Rev. D85 (2012) 074007

Splittorff, Toublan & Verbaarschot, Nucl. Phys. B 620 (2002) 290

Strodthoff, Schaefer & LvS, Phys. Rev. D85 (2012) 074007

' ttice simulations:

Strodthoff & L.v.S., PLB 731 (2014) 350

Can we describe the two-color world with the 3d effective lattice theory for heavy quarks?

[see Philipp Scior's talk this afternoon]

Cotter, Giudice, Hands & Skullerud, PRD 87 (2013) 034507

Nuclear Matter and Chiral Transition

• Parity-Doublet Model with mesonic and baryonic fluctuations

QCD with Isospin Chemical Potential

• QM Model with fluctuating chiral & pion condensates

need 2 fields in effective potential

$$U=U(\rho^2,d^2),$$
 but replace $\rho^2=\sigma^2+\vec{\pi}^2$ and $d^2=|\Delta|^2$ by $\rho^2=\sigma^2+\pi_0^2$ and $d^2=\pi_1^2+\pi_2^2=\pi_+\pi_-$

Kamikado, Strodthoff, LvS & Wambach, PLB 718 (2013) 1044

QCD with Isospin Chemical Potential

• *T* = 0 isospin density - FRG vs. lattice QCD:

Kamikado, Strodthoff, LvS, PLB 718 (2013) 1044 Detmold, Orginos & Shi, Phys. Rev. D86 (2012) 054507

Baryon & Isospin Chemical Potential

Kamikado, Strodthoff, LvS & Wambach, PLB 718 (2013) 1044

Up-Antidown Population Imbalance

Up-Antidown Population Imbalance

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

G₂ Gauge Theory at Finite Density

- real (positive), no sign problem (as adjoint QCD).
- rank 2, quenched 1st order deconfinement (as SU(3)).
- 7 colors, 14 gluons.
- diquark condensation (as two-color QCD).
- but has fermionic baryons also.
- breaks down to QCD:

Higgs $G_2 \longrightarrow SU(3)$

Holland, Minkowski, Pepe & Wiese, Nucl. Phys. B 668 (2003) 207 Wellegehausen, Wipf & Wozar, Phys. Rev. D 83 (2011) 114502 Maas, LvS, Wellegehausen & Wipf, Phys. Rev. D 86 (2012) 111901R

G₂ Gauge Theory at Finite Density

- but have fermionic baryons also
- finite baryon density (bosonic and fermionic)

Maas, LvS, Wellegehausen & Wipf, Phys. Rev. D 86 (2012) 111901R

G₂ Spectroscopy

• $N_f = 1$: real and positive for single flavor: $SU(2) \rightarrow U_B(1)$ • $N_f = 2$: 2 Goldstone bosons: scalar (anti)diquarks exact mass relations $m_{d(0^+)} = m_{\pi(0^-)}$ 1.2 $m_{d(1^+)} = m_{\rho(1^-)}$ $d(0^+) \vdash$ ж 1.1 ж ¥ $d(1^{+})$ 1.0 Ж Ж Ж 0.9 ж ж 0.8 Ж ً Ж Ж 0.7 ¥ m釆 ً × 0.6 Name $m_{d(0^+)}$ κ 0.5 Heavy ensemble 1.05 326 MeV0.147¥ 0.4 Light ensemble 0.96 0.15924 247 MeV * $\beta = 0.96$ 0.3 0.2 0.148 0.152 0.156 0.160 κ Wellegehausen, Maas, Wipf & LvS, PRD 89 (2014) 056007

G₂ Spectroscopy

Wellegehausen, Maas, Wipf & LvS, PRD 89 (2014) 056007

Finite Baryon Density

Wellegehausen, Maas, Wipf & LvS, PRD 89 (2014) 056007

Finite Baryon Density

Wellegehausen, Maas, Wipf & LvS, PRD 89 (2014) 056007

Summary & Outlook

• Finite Isospin Density in QCD and Baryon Density in Two-Color QCD

- detailed understanding of phase diagram
- functional methods and models vs. lattice MC
- analogies with ultracold fermi gases
 BEC-BCS crossover, population imbalance
 with universal phase diagram...

• Phase Diagram of G₂ Gauge Theory

no sign problem – fermionic baryons

QCD Phase Diagram

 refined functional methods & models, baryonic dofs, finite volume...

Early Universe

