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HEAVY ION COLLISION : THE CURRENT PICTURE
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Long time puzzle: Does (fast) hydrodynamization occur?
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THE SURPRISING SUCCESS OF HYDRODYNAMICS

What is Hydrodynamics?

I[) Macroscopic theory
II) Few field variables: Pr, Pr, e,
I1I) Conservation law: 0, T* =

IV) Need input:

1) Equation of state f(Pr, Pr)=c¢

2) Small anisotropy

3) Short isotropization time

4) Initialization: e(79), Pr(10)7? ...

5) Viscous coefficients: shear viscosity 7,...
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THE SURPRISING SUCCESS OF HYDRODYNAMICS

What is Hydrodynamics?
) Macroscopic theory

II) Few field variables: P, Pr, €, u
I1I) Conservation law: 0, T* =

[V) Need input:
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HOW TO STUDY THE TRANSITION?

Weakly coupled method at dense regime:
oy < 1 bl-'tfgluon ~

s




THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

1
L= =TT 47, AN

T er
CGC
. 1 /2 . N
LO: 25(8 +B) DT = J
~— ~—
Classical Color sources
color fields on the light cone

[KRASNITZ, VENUGOPALAN (1998)]
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time
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THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time
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THE COLOR GLASS CONDENSATE AT NLO

E(x)=¢&(x1) —I—Jﬂe,;(x) +
—— LP/
LO NLO

ex(x) perturbation to €(x ) created by a plane wave
of momentum % in the remote past.

ex(x) obeys to the linear Equation Of Motion
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THE COLOR GLASS CONDENSATE AT NLO
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[ROMATSCHKE, VENUGOPALAN (2006)]

Small Fluctuations grow exponentially (Weibel instability)
[MROWCZYNSKI (1988)]
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THE COLOR GLASS CONDENSATE AT NLO

e Because of instabilities, the NLO correction eventually becomes as large
as the LO = Important effect, should be included

¢ NLO alone will grow forever = unphysical effect, should be taken care of

o i I o .
J . 1IMM
v””'I

a0 0 20 ) 60 80 20 o 20 ) 60 80
time time

Plo ——8i0 —— Paio ——Eyio ——

e Such growing contributions are present at all orders of the perturbative
expansion

How to deal with them?
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THE COLOR GLASS CONDENSATE AT NLO

e Because of instabilities, the NLO correction eventually becomes as large
as the LO = Important effect, should be included

NLO alone will grow forever = unphysical effect, should be taken care of
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e Such growing contributions are present at all orders of the perturbative
expansion

How to deal with them?
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THE CLASSICAL-STATISTICAL METHOD

At the initial time T = 1, take:

B0, %) = &o(t0,7) +J ¢Zo(0, )
k

where c; are random coefficients: (cycp, ) ~ o,

Solve the Classical equation of motion D, F*Y = J

Compute <E2(T, 5c’)>, where () is the average on the ¢; (Monte-Carlo)

One can show that this resums all the fastest growing terms at each
order, leading to a result that remain bounded when T — o
[GELIS, LAPPI, VENUGOPALAN (2008)]

This gives: LO+NLO+Subset of higher orders
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

LO: Classical solution
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

LO: Classical solution

/ NLO:
/' Parabolic_ﬁ\\
| approximation

,'/ around LO ‘\
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

/" NLO: |
/' Parabolic_ﬁ\
! approximation
+ around LO \\
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed: ___,
keep the
complete
potential
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

Resummed: ___,
keep the
complete
potential
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IMPLICATIONS OF THE CLASSICAL-STATISTICAL METHOD

$ (70, %) = ©o(T0, %) + [7crag(To, X)

Resummed: ___,
keep the
complete

potential

150
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THE NLO SPECTRUM

» Need to know &;(1o, X) at the time T, we start the numerical simulation

e For practical reasons, we must start in the forward light cone (ty > 0)

x~ xt

5*(33) t,_;\_Joo eik:.a:

This can be done analytically [TE,GELIS 1307:1765]
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THE NLO SPECTRUM [TE,GELIS (2013)]

Resultatt=0"

oz (Txi,m) =ive™ [Flf,a (U, T ) = o (ul,Tny)]

6’13; (t,x1,m) =MD [Fi’,{ (Upy Tyx1) — F'VIE (ulaTst_)}

kL kL L

e 1;, depends on the color sources J* of the nuclei

¢ Analytical checks performed on the solution

e Gauss’s law
e linearized Yang-Mills EOM
e Orthonormality of the mode functions
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APPLICATION OF THE CSA TO THE QGP

Initial condition

EY(x) =& +J Cvk ek,LkL (To,x1,M)

'VkJ_

Time evolution (I = x,y,n) for each configuration
1
D F*M =0 = THY = Jg"FPOF o — FOFY,

Cross checks: Gauss’s law

DL E* =0
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YM ON A LATTICE

Gauge potential A* — link variables (exact gauge invariance on the lattice)

7 ,
L )—'77

)
ay, ar

Numerical parameters
Transverse lattice size L = 64, transverse lattice spacing Qar = 1
Longitudinal lattice size N = 128, longitudinal lattice spacing a; = 0.016
Number of configurations for the Monte-Carlo N o, = 200 to 2000
Initial time Q,t9 = 0.01
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NUMERICAL RESULTS [TE,GELIS (2013)]
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NUMERICAL RESULTS [TE,GELIS (2013)]

o, =21072 (g =0.5)
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NUMERICAL RESULTS [TE,GELIS (2013)]
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ANOMALOUSLY SMALL VISCOSITY

Assuming simple first order viscous hydrodynamics

— 21’]0’(72
——

4
€ER €0T 3

Ideal hydro first order correction

we can compute the dimensionless ratio (n =1yt')

ne * 1

v

In contrast, perturbation theory at LO gives ne*% ~ 300.

If the system is nearly thermal

3 1
€4 ~§ = Tlcloseto —
K 47t
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CONCLUSION

[Does (fast) hydrodynamization occur?]

o Correct NLO spectrum from first principles

. b~ 0.6for g =0.5att~ Ifin/c

o No need for strong coupling to get isotropization

o Assuming simple first order viscous hydrodynamics
ne_% <1
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BAcKUP: CGC INITIAL CONDITIONS VS COMPLETELY DECOHERENT FIELDS

(A) ~ 0, ( > ~0
(A4%) = (4 ~ %

g 4
(E?) - <E>2 ~%
May give correct answer at LO
Not correct at NLO

g
)= {4 ~ Q2

) = {E) ~ Q

give correct answer at LO
give correct answer at NLO

A

Towards the understanding of hydrodynamization in the quark gluon plasma 19718

THOMAS EPELBAUM



RENORMALIZATION PROCEDURE

™ ~Q

resum

4
+ Co/\4 + Cz(Qs)/\z
Quartic divergences can be subtracted with a simulation where

EM(x) =0+ ZJ Cine Cpre (T0, X 1,7)
A, k

Givesa T’ =THY —TH

part renor resum vac

THOMAS EPELBAUM Towards the understanding of hydrodynamization in the quark gluon plasma



RENORMALIZATION PROCEDURE

Anisotropic system = Ay =k max @Nd Ap = kyax = 22

T

Q4 max
part renor g + T2 + b
Q4 Q% max
Lpan renor + T2 + "t
05

PTpan renor ? + szJ_ max

How to deal with the £ m“ terms — fitted for the time being.

Otherwise e and P, behaves as T~ at early time.

part renor part renor
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RENORMALIZATION PROCEDURE

<PT>phys. = <PT> E:‘C“;%CC‘L - <PT> (1\:‘?;
<€1 PL>phys_ = <€, PL> i““ﬁﬁﬁ;_ — <€, PL> 1(1:5; +A T2,
— ——
computed computed fitted

The additional term is the only one that can satisfy Bjorken’s law

P
6Te+€+ L

=0
and the Equation Of State:
€ = 2PT + PL
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