Properties of K^* in a medium

Andrej Ilner

Johann Wolfgang Goethe-Universität Frankfurt am Main
Institut für theoretische Physik
Frankfurt Institute for Advanced Studies

In collaboration with
Daniel Cabrera, Elena Bratkovskaya

2014.06.10
Hersonissos, Crete, Greece
Contents

1. Introduction and motivation
2. Framework
3. Dense matter
4. Hot matter
5. Summary and outlook
Introduction and motivation

- **In-medium properties of kaons** (K, anti-K, K* and anti-K*)

- First results were obtained using *chiral perturbation theory* (Kaplan, Nelson, *PLB* 175 (1986) 57) and *relativistic mean field models* (Schaffner, Gal, Mishustin, Stöcker, Greiner, *PLB* 334 (1994) 268)

- **Dirac-Brueckner Hartree-Fock** approximation (Brueckner, PR 97 (1955) 1353; Hjorth-Jensen et al., PR 261 (1995) 125) applied to *KN system*

- DBHF goes beyond a mean fields and uses realistic KN interactions for the calculations
Introduction and motivation

- Experimentally strangeness has been studied since the 1980s
- In-medium properties are studied e.g. in heavy-ion collisions
- For baryonic matter at SIS (and in the future at FAIR) etc. energies
- For hot nuclear matter at RHIC, LHC etc. energies
- Later KaoS collaboration published results which agreed with theoretical predictions when including K / anti-K in-medium effects

Figs. by E. Bratkovskaya et al.
Introduction and motivation

- Goal: study in-medium strange pseudoscalar and vector mesons within Breit-Wigner approach in a consistent way, for a convenient implementation in transport models of strangeness production in HICs

1. **Dense nuclear matter (FAIR):** self-consistent coupled-channel approach ("G-matrix")
 - K^* and anti-K^* modified from K^*N and $K^* \to K\pi$ [*different behaviour!*]
 - K^* self-energy within the unitarised chiral perturbation theory [*NEW!*]

2. **Hot nuclear matter (RHIC/LHC):** results from Chiral Perturbation Theory in hot meson gas
 - K^* and anti-K^* in-medium effects from $K^* \to K\pi$ coupling [behave similarly]
 - Estimation of the real part of the K^* self-energy [*mass shift!*]
Framework

- **G-matrix** results are approximated by the **Breit-Wigner** spectral function
- Evaluation of in-medium **widths** and **masses**, which are connected to **imaginary** and **real** part of the **self-energy** of strange mesons
- Approximation implicitly neglects momentum dependence of self-energy
The meson propagator \((i = K, \text{anti-}K; K^*, \text{anti-}K^*)\)

\[
D_i(\omega, \vec{q}, \rho) = \frac{1}{\omega^2 - \vec{q}^2 - m_i^2 - \Pi_i(\omega, \vec{q}, \rho)}
\]

Spectral function

\[
S_i(\omega, \vec{q}, \rho) = -\frac{1}{\pi} \Im(D_i(\omega, \vec{q}, \rho)) = -\frac{1}{\pi} \frac{\Im(\Pi_i(\omega, \vec{q}, \rho))}{\left| \omega^2 - \vec{q}^2 - m_i^2 - \Pi_i(\omega, \vec{q}, \rho) \right|^2}
\]

Spectral function rewritten in a way more similar to the Cauchy-Lorentz distribution

\[
S_i(\omega, \vec{q}, \rho) = -\frac{1}{\pi} \frac{\Im(\Pi_i(\omega, \vec{q}, \rho))}{\left[\omega^2 - \vec{q}^2 - (m_i^2 + \Re(\Pi_i(\omega, \vec{q}, \rho))) \right]^2 + \left[\Im(\Pi_i(\omega, \vec{q}, \rho)) \right]^2}
\]
Spectral function in the Breit-Wigner approach

\[A_i(M, \rho) = C_1 \frac{2}{\pi} \frac{M^2 \Gamma_i(M, \rho)}{(M^2 - M_0^*(\rho))^2 + (M \Gamma_i(M, \rho))^2} \]

For \(q = 0 \) a connection between the imaginary part of the meson propagator and the Breit-Wigner spectral can be established.

\[A_i(M, \rho) = 2 \cdot C_1 \cdot M S_i(M, \rho) \]

The following relations follow from that connection.

\[M_0^{2*} = m_i^2 + \Re \left(\Pi_i(M, \rho) \right) \quad \Gamma_i(M, \rho) = -\frac{\Im \left(\Pi_i(M, \rho) \right)}{M} \]

Spectral function is normalised

\[\int_0^\infty A_i(M, \rho) dM = 1 \]
Dense matter

- Dense matter scenario: results from meson-baryon T (or G)-matrix in Dirac-Brueckner Hartree-Fock.
- Self-consistency, coupled-channels and unitarity.
- The Bethe-Salpeter equation in coupled channels is solved for the in-medium scattering amplitude.

\[
T_{ij}(\rho) = V_{ij} + V_{il} G_l(\rho) T_{lj}(\rho)
\]

Medium: [Diagram of the Bethe-Salpeter equation]

- V: LO interaction from chiral Lagrangian
 - KN: meson baryon ChPT (coupling of octet of pseudoscalar mesons to the octet of $J^P=1/2^+$ baryons)
 - K*N: Hidden Local Gauge Symmetry Lagrangian (vector-meson octet)
- G: dressed in-medium meson-baryon propagator, including Pauli blocking on nucleon states, baryon potentials and meson self-energies.

Authors:
- Koch
- Kaiser, Waas, Weise
- Lutz, Kolomeitsev
- Schaffner-Bielich
- Ramos, Oset, Tolos
- Oller, Meissner
- Hosaka, Jido
- Nieves, Ruiz-Arriola
- Cassing, Bratkovskaya, Tolos, Ramos
• **Additional contribution for strange vector mesons:** K^* decays into $K\pi$ (two-meson cloud effects)

• It is possible to account for the in-medium width of the $K^* \to K\pi$ mode by incorporating the K spectral function

• *Pions* are also expected to experience in-medium modifications. Neglect this effect for simplicity (future work).
The \((p\text{-wave})\) decay width of the \(K^*\)

\[
\Gamma_{K^{*\text{ar}}} (\mu, \rho) = \Gamma_0 \left(\frac{\mu_0}{\mu} \right)^2 \frac{\int_{M_{\text{min}}}^{\mu - m_\pi} A_K (M, \rho) \cdot q(\mu, M)^3 \, dM}{\int_{M_{\text{min}}}^{\mu_0 - m_\pi} A_K (M, 0) \cdot q(\mu_0, M)^3 \, dM}
\]

\(M : \text{off-shell mass of the } K\)
\(\mu : \text{off-shell mass of the } K^*\)

with

\[
q(\mu, M) = \frac{\sqrt{\lambda(\mu, M, m_\pi)}}{2 \mu} \quad q(\mu_0, M) = \frac{\sqrt{\lambda(\mu_0, M, m_\pi)}}{2 \mu_0}
\]

This is a similar approach that was also used for the \(a_1\) decaying into \(\pi \rho\).
Dense matter: Kaons

- Neglect imaginary part of self-energy
- Re $\Pi \leftrightarrow$ mass shift from chiral Lagrangian dynamics in a t-ρ approximation

![Graph showing K^+ mass shift vs ρ/ρ_0]
Dense matter: Kaons

- The K has almost no broadening and behaves like a stable particle when increasing nuclear density (the “full” calculation leads to a very small width)
- K experiences a repulsive potential → spectral function gains a positive mass shift
Dense matter: anti-Kaons

- Self-energy by Ramos et al. from G-matrix approach with ChPT, \(\text{anti-K} \ N \to \Lambda(1405) \! \).
- Results were extrapolated to higher densities (i.e. beyond normal density), assuming some saturation.

Ramos, Oset, NPA 671 (2000) 481
Dense matter: anti-Kaons

- Spectral function for the anti-K
- In vacuum the particles are stable (Dirac delta)
- The anti-K experiences an **attractive potential** → negative mass shift
- And **considerable broadening**!
- (detailed structure of excitations not retained)

![K^- spectral function](image)

\[A(M, \rho) \, [\text{GeV}^{-1}] \]

- \(\rho/\rho_0 = 1.0 \)
- \(\rho/\rho_0 = 2.0 \)

K^- in vacuum

Ramos, Oset, NPA 671 (2000) 481
Dense matter: K^*

- **New contribution: K^* self-energy from K^*N interaction**
 - The K^* in a dense nuclear medium can be treated just like the K with respect to the self-consistent chiral coupled-channel calculations based on chiral dynamics ([Tolos et al PRC87 (2010) 045210; Oset et al EPJA44 (2010) 445](#)).
 - Same expression for the transition potential for K^*N as for the KN, also for the self-energy

\[
\Pi(q^0,\vec{q},\rho) = 2 \int \frac{n(\vec{p})}{(2\pi)^3} [T_{K^*p}(p^0, \vec{p}, \rho) + T_{K^*n}(p^0, \vec{p}, \rho)] d^3p \approx \frac{1}{2} (T_{K^*p}(\rho) + T_{K^*n}(\rho)) \rho
\]

- $t-\rho$ approximation (no resonances in K^*N), Π accounts for K^* mass shift
- We have unitarised the interaction matrix using the Bethe-Salpeter equation
 \[
 T = V/(1 - VG)
 \]
Dense matter: K^*

- Real part obtained from self-energy expression (previous slide)
- Width of K^* self-energy calculated through in-medium modification via $K^* \to K \pi$
- Width changes moderately (decreases)
Dense matter: K^*s

- K^* experiences repulsive medium, spectral function shifted to higher masses.
- As density increases \rightarrow K^* width is actually lower due to the heavier Kaon in $K^* \rightarrow K\pi$
- The two effects compensate: shape of K^* spectral function practically unchanged.
Dense matter: anti-K*s

- **anti-K* N**: dynamics ruled by S=-1 resonances (as for anti-K) → complicated **many-body structure** and **E-dependence** of self-energy

- Parametrise full G-matrix calculation [Tolos et al PRC87 (2010)]
 - 1. Solve dispersion relation: quasi-particle energy ω_{K^*}
 - 2. Use ω_{K^*} to find width: $\Gamma_{K^*} = \text{Im} \frac{\Pi_{K^*}}{\omega_{K^*}}$

Tolos et al., PRC 82 (2010) 045210
Dense matter: anti-K*s

- Blue: Original G-matrix calculation
- Orange: Breit-Wigner spectral function
- Green: Breit-Wigner spectral function with corrected mass shift
- Middle plot: Magenta line denotes evaluation of K\pi width with in-medium kaons

Breit-Wigner does not retain multi-pole structure and overestimates the strength at low energies, but *keeps essential features*
Hot matter: kaons

- Consider hot, isotopically symmetric gas of pions: K^* and anti-K^* identical
- Medium effects tied to $K^* \rightarrow K \pi$ decay mode
- K in hot pion gas: evaluated by Martemyanov et al. in meson-meson ChPT + phenomenological extension for higher energies
- (pions considered stable)

The quantities of interest in this case are the width Γ_K and the mass shift δM_K to build the K^* selfenergy

Martemyanov et al., PRL 93 (2004) 052301
Hot matter: kaons

- Use Breit-Wigner to construct K spectral function at different temperatures
Hot matter: K*s

- Use K spectral function to obtain K* width

\[
\Gamma_{K^*}(\mu, \rho) = \Gamma_0 \left(\frac{\mu_0}{\mu}\right)^2 \cdot \frac{\int_{M_{\text{min}}}^{\mu-m_\pi} A_K(M, \rho) \cdot q(\mu, M)^3 dM}{\int_{M_{\text{min}}}^{\mu_0-m_\pi} A_K(M, 0) \cdot q(\mu_0, M)^3 dM}
\]

K* in-medium width

Graph showing the in-medium width of K* as a function of chemical potential \(\mu\) for different temperatures: vacuum, \(T = 0.09\) GeV, and \(T = 0.15\) GeV.
Hot matter: K*s

- Use dispersion relation to calculate the real part using the imaginary part of the self-energy!

\[\Re(\Pi(\mu)) - \Re(\Pi_{\text{vac}}(\mu)) = -\frac{2}{\pi} \int_{m_\pi}^{\infty} \frac{\mu'}{\mu'^2 - \mu^2} \left[\Gamma_{\text{dec}}(\mu', T) - \Gamma_{\text{vac}}(\mu') \right] d\mu' \]

- Unfortunately the emerging integral is divergent
- Use phenomenological form factor in K* -> K π vertex to regularise integral

\[F(\Lambda, \mu) = \left(\frac{\Lambda^2 + q(\mu_0, M_0)^2}{\Lambda^2 + q(\mu, M)^2} \right)^2 \]

\[q(\mu, M) = \frac{\sqrt{\lambda(\mu, M, m_\pi)}}{2\mu} \]

\[q(\mu_0, M) = \frac{\sqrt{\lambda(\mu_0, M_0, m_\pi)}}{2\mu_0} \]

M: off-shell mass of the K
\mu: off-shell mass of the K*
\mu_0: pole mass of the K
M_0: pole mass of the K*
Hot matter: K*s

- This results in the following real part of the self-energy (↔ mass shift)

 (repulsive and VERY small)
Hot matter: K^*s

- We obtain the following spectral function (for different temperatures)
- Spectral function is fairly stationary with respect to temperature
- Barely any broadening at the qp peak (some strength below threshold)

K^* spectral function
Summary and outlook

- The in-medium properties and the behaviour of the strange mesons K, anti-K, K* and anti-K* bar in a hot, pionic and dense, baryonic nuclear medium have been studied within a Breit-Wigner parametrisation of the spectral function.

- In dense nuclear matter, the S=+1 mesons keep their vacuum structure, and can be easily cast in BW form with mild changes in their masses and widths.

- In the S=-1 sector, only an approximate (“average”) description of the spectral function is achieved, retaining essential features as attractive potential and broadening.

- A new contribution for the K* self-energy in dense matter was calculated in ChPT, leading to a positive mass shift 40 MeV at normal matter density.

- In hot hadronic matter, the K* experiences a mild broadening and negligible mass shift only at very high temperatures, from changes in the kaon spectral function.

- These results can now be implemented into transport models and used in simulations to get more realistic behaviour for strange particles in HICs.
The end.

Thank you for your attention.