Inhomogeneous chiral symmetry-breaking phases in isospin-asymmetric matter

Daniel Nowakowski¹, Michael Buballa¹, Stefano Carignano², and Jochen Wambach¹

¹ Institut für Kernphysik, TU Darmstadt ² Department of Physics, The University of Texas at El Paso

4th Network Workshop on Theory of UltraRelativistic heavy Ion Collisions TURIC-2014, Hersonissos, Crete

 order-parameters mostly assumed to be spatially constant, e.g.

$$\left\langle \bar{\psi}\psi \right\rangle (\vec{x}) = \left\langle \bar{\psi}\psi \right\rangle$$

 order-parameters mostly assumed to be spatially constant, e.g.

$$\left\langle \bar{\psi}\psi \right\rangle \left(ec{x}
ight) =\left\langle ar{\psi}\psi
ight
angle$$

how about non-uniform phases?

Nakano, Tatsumi, Phys. Rev. D 71:114006 (2005)

 order-parameters mostly assumed to be spatially constant, e.g.

$$\left\langle \bar{\psi}\psi \right\rangle \left(\vec{x}
ight) =\left\langle \bar{\psi}\psi \right
angle$$

how about non-uniform phases?

Nickel, Phys. Rev. D 80:074025 (2009)

 order-parameters mostly assumed to be spatially constant, e.g.

$$\left\langle \bar{\psi}\psi \right\rangle \left(ec{x}
ight) =\left\langle \bar{\psi}\psi
ight
angle$$

- how about non-uniform phases?
 - first-order phase-transition covered by inhomogeneous region

 order-parameters mostly assumed to be spatially constant, e.g.

$$\left\langle \bar{\psi}\psi \right\rangle \left(\vec{x}
ight) =\left\langle \bar{\psi}\psi \right
angle$$

- how about non-uniform phases?
 - first-order phase-transition covered by inhomogeneous region

- ▶ isospin-asymmetric matter $\mu_u \neq \mu_d$
- relevance in nature?

Examples:

- 1. heavy ion collisions
 - excess of neutrons in heavy nuclei
- 2. neutron stars
 - requirement of electrical neutrality

Our model

N_f = 2 Nambu–Jona-Lasinio (NJL) model

$$\mathcal{L} = \bar{\psi} \left(i \gamma^{\mu} \partial_{\mu} - m \right) \psi + G \left(\left(\bar{\psi} \psi \right)^{2} + \left(\bar{\psi} i \gamma_{5} \tau^{a} \psi \right)^{2} \right), \ \psi = (u, d)^{T}$$

- mean-field approximation
- condensates

$$\begin{array}{ll} S_u(\vec{x}) = \left< \overline{u}u \right>, & P_u(\vec{x}) = \left< \overline{u}i\gamma_5 u \right> \\ S_d(\vec{x}) = \left< \overline{d}d \right>, & P_d(\vec{x}) = \left< \overline{d}i\gamma_5 d \right> \end{array}$$

retain spatial dependence of the condensates in z-direction (1d modulation)

$$S_f(\vec{x}) \rightarrow S_f(z), \qquad P_f(\vec{x}) \rightarrow P_f(z)$$

thermodynamic potential

$$\Omega(T,\mu;M(z)) = -\frac{TN_c}{V} \sum_{E_n} \ln\left(2\cosh\left(\frac{E_n - \hat{\mu}}{2T}\right)\right) + \Omega_{\text{cond}} + \text{const.}$$

where

$$\Omega_{\text{cond}} = \frac{G}{L} \int_0^L dz \left(\left(S_u(z) + S_d(z) \right)^2 + \left(P_u(z) - P_d(z) \right)^2 \right)$$

• $\hat{\mu}$: isospin-asymmetric matter

$$\hat{\mu} = \begin{pmatrix} \mu_u \\ \mu_d \end{pmatrix} = \begin{pmatrix} \bar{\mu} + \delta \mu \\ \bar{\mu} - \delta \mu \end{pmatrix}$$

where $\delta \mu = (\mu_u - \mu_d)/2 = \mu_l/2, \quad \bar{\mu} = (\mu_u + \mu_d)/2 = \mu_B/3$

► E_n : eigenvalues of mean-field Hamiltonian \tilde{H}_{MF} = diag($\tilde{H}_{MF}^u, \tilde{H}_{MF}^d$)

$$\tilde{H}^{f}_{\mathsf{MF}} = \begin{pmatrix} i\sigma^{i}\partial_{i} & M_{f}(z) \\ M^{*}_{f}(z) & -i\sigma^{i}\partial_{i} \end{pmatrix}, f \in \{u, d\}$$

• effective mass $M_f(z)$ (chiral limit m = 0):

$$M_{f}(z) = -2G(S_{f}(z) + S_{h}(z) + i(P_{f}(z) - P_{h}(z)))$$

► E_n : eigenvalues of mean-field Hamiltonian \tilde{H}_{MF} = diag($\tilde{H}_{MF}^u, \tilde{H}_{MF}^d$)

$$\tilde{H}^{f}_{\mathsf{MF}} = \begin{pmatrix} i\sigma^{i}\partial_{i} & M_{f}(z) \\ M^{*}_{f}(z) & -i\sigma^{i}\partial_{i} \end{pmatrix}, \ f \in \{u, d\}$$

• effective mass $M_f(z)$ (chiral limit m = 0):

$$M_{f}(z) = -2G(S_{f}(z) + S_{h}(z) + i(P_{f}(z) - P_{h}(z)))$$

▶ Problem: Inhomogeneous chiral condensates couple different momenta → diagonalization of \tilde{H}_{MF} very difficult

► E_n : eigenvalues of mean-field Hamiltonian \tilde{H}_{MF} = diag($\tilde{H}_{MF}^u, \tilde{H}_{MF}^d$)

$$\tilde{H}^{f}_{\mathsf{MF}} = \begin{pmatrix} i\sigma^{i}\partial_{i} & M_{f}(z) \\ M^{*}_{f}(z) & -i\sigma^{i}\partial_{i} \end{pmatrix}, \ f \in \{u, d\}$$

• effective mass $M_f(z)$ (chiral limit m = 0):

$$M_{f}(z) = -2G(S_{f}(z) + S_{h}(z) + i(P_{f}(z) - P_{h}(z)))$$

- ▶ Problem: Inhomogeneous chiral condensates couple different momenta → diagonalization of \tilde{H}_{MF} very difficult
- Solution: Assume periodicity of the condensates to expand as Fourier series

$$S_f(z) = \sum_{q_k} S_{f,\vec{q}_k} \exp{(iq_k z)}, \qquad P_f(z) = \sum_{q_k} P_{f,\vec{q}_k} \exp{(iq_k z)}$$

and exploit lattice structure for brute-force approach in momentum space

 fully self-consistent analytical solution of the order-parameter known from 1+1 dimensional Gross-Neveu model (Nickel, Phys. Rev. D 80:074025, 2009)

$$M_u(z) = M_d(z) = \nu \Delta \operatorname{sn}(\Delta z | \nu)$$

▶ <u>but</u>: also simplified shapes possible ⇒ brute force diagonalization of the Hamiltonian; e.g. for

$$S_f(z) = \Delta_f \cos(q_f z)$$
 $P_f(z) = \Delta_f \sin(q_f z)$

 fully self-consistent analytical solution of the order-parameter known from 1+1 dimensional Gross-Neveu model (Nickel, Phys. Rev. D 80:074025, 2009)

$$M_u(z) = M_d(z) = \nu \Delta \operatorname{sn}(\Delta z | \nu)$$

▶ <u>but</u>: also simplified shapes possible ⇒ brute force diagonalization of the Hamiltonian; e.g. for

$$S_f(z) = \Delta_f \cos(q_f z)$$
 $P_f(z) = \Delta_f \sin(q_f z)$

• minimization of the thermodynamic potential $\Omega(T, \bar{\mu}, \mu_l)$ w.r.t. to (Δ, ν) resp. $(\Delta_u, \Delta_d, q_u, q_d)$

- ▶ simple picture: quarks favor values for $q \sim \mu$ in the inhomogeneous phase
- question: what happens if $\mu_u \neq \mu_d$; non-degenerate flavors prefer different q's?

- ▶ simple picture: quarks favor values for $q \sim \mu$ in the inhomogeneous phase
- question: what happens if $\mu_u \neq \mu_d$; non-degenerate flavors prefer different q's?
- enforcing equal periodicities: inhomogeneous chiral symmetry breaking gets energetically less favored

- simple picture: quarks favor values for $q \sim \mu$ in the inhomogeneous phase
- question: what happens if $\mu_u \neq \mu_d$; non-degenerate flavors prefer different q's?
- enforcing equal periodicities: inhomogeneous chiral symmetry breaking gets energetically less favored

- simple picture: quarks favor values for $q \sim \mu$ in the inhomogeneous phase
- question: what happens if $\mu_u \neq \mu_d$; non-degenerate flavors prefer different q's?
- enforcing equal periodicities: inhomogeneous chiral symmetry breaking gets energetically less favored

- simple picture: quarks favor values for $q \sim \mu$ in the inhomogeneous phase
- question: what happens if $\mu_u \neq \mu_d$; non-degenerate flavors prefer different q's?
- enforcing equal periodicities: inhomogeneous chiral symmetry breaking gets energetically less favored

- simple picture: quarks favor values for $q \sim \mu$ in the inhomogeneous phase
- question: what happens if $\mu_u \neq \mu_d$; non-degenerate flavors prefer different q's?
- enforcing equal periodicities: inhomogeneous chiral symmetry breaking gets energetically less favored

inhomogeneous region bordered by second-order phase transition lines

> size of inhomogeneous region gets reduced for non-zero μ_I

> size of inhomogeneous region gets reduced for non-zero μ_I

> size of inhomogeneous region gets reduced for non-zero μ_I

- idea: allow different periodicities for the two quark flavors
- here: resort to simpler shapes

$$S_f(z) = \Delta_f \cos{(q_f z)}, \quad P_f(z) = \Delta_f \sin{(q_f z)}$$

- idea: allow different periodicities for the two quark flavors
- here: resort to simpler shapes

 $S_f(z) = \Delta_f \cos{(q_f z)}, \quad P_f(z) = \Delta_f \sin{(q_f z)}$

• Problem: formalism breaks down if ratio q_u/q_d is irrational

- idea: allow different periodicities for the two quark flavors
- here: resort to simpler shapes

 $S_f(z) = \Delta_f \cos{(q_f z)}, \quad P_f(z) = \Delta_f \sin{(q_f z)}$

- Problem: formalism breaks down if ratio q_u/q_d is irrational
- Solution: consider rational ratio instead

 $q_u = mq, \quad q_d = nq, \quad m/n \in \mathbb{Q}$

then minimize Ω w.r.t. $(m/n, q, \Delta_u, \Delta_d)$

- idea: allow different periodicities for the two quark flavors
- here: resort to simpler shapes

$$S_f(z) = \Delta_f \cos(q_f z), \quad P_f(z) = \Delta_f \sin(q_f z)$$

- Problem: formalism breaks down if ratio q_u/q_d is irrational
- Solution: consider rational ratio instead

$$q_u = mq, \quad q_d = nq, \quad m/n \in \mathbb{Q}$$

then minimize Ω w.r.t. $(m/n, q, \Delta_u, \Delta_d)$

 inhomogeneous chiral symmetry breaking phase can be stabilized

One-dimensional modulations: Flavor mixing

(e.g. Frank, Buballa, Oertel, Phys. Lett. B 562, 221 (2003))

- idea: study inhomogeneous phases with varying degree of flavor-mixing
- generalize four-fermion interaction in the model

$$G\left(\left(\bar{\psi}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau^{a}\psi\right)^{2}\right) \rightarrow$$

$$\left(1 - \alpha\right)G\left(\left(\bar{\psi}\psi\right)^{2} + \left(\bar{\psi}\tau^{a}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau^{a}\psi\right)^{2}\right)$$

$$+ \alpha G\left(\left(\bar{\psi}\psi\right)^{2} - \left(\bar{\psi}\tau^{a}\psi\right)^{2} - \left(\bar{\psi}i\gamma_{5}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau^{a}\psi\right)^{2}\right)$$

• effective mass $M_f(z)$ (chiral limit m = 0):

 $M_f(z) = -4G\left((1-\alpha)S_f(z) + \alpha S_h(z) + i\left((1-\alpha)P_f(z) - \alpha P_h(z)\right)\right), \ f \neq h$

• degree of flavor-mixing controlled by parameter $\alpha \in [0, 1]$ (at fixed G)

One-dimensional modulations: Flavor mixing

(e.g. Frank, Buballa, Oertel, Phys. Lett. B 562, 221 (2003))

- idea: study inhomogeneous phases with varying degree of flavor-mixing
- generalize four-fermion interaction in the model

$$G\left(\left(\bar{\psi}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau^{a}\psi\right)^{2}\right) \rightarrow$$

$$\left(1 - \alpha\right)G\left(\left(\bar{\psi}\psi\right)^{2} + \left(\bar{\psi}\tau^{a}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau^{a}\psi\right)^{2}\right)$$

$$+ \alpha G\left(\left(\bar{\psi}\psi\right)^{2} - \left(\bar{\psi}\tau^{a}\psi\right)^{2} - \left(\bar{\psi}i\gamma_{5}\psi\right)^{2} + \left(\bar{\psi}i\gamma_{5}\tau^{a}\psi\right)^{2}\right)$$

• effective mass $M_f(z)$ (chiral limit m = 0):

 $M_f(z) = -4G\left((1-\alpha)S_f(z) + \alpha S_h(z) + i\left((1-\alpha)P_f(z) - \alpha P_h(z)\right)\right), \ f \neq h$

▶ degree of flavor-mixing controlled by parameter $\alpha \in [0, 1]$ (at fixed *G*)

 \Rightarrow previously considered: $\alpha = 0.5$

 \Rightarrow here: $\alpha = 0$

No flavor mixing: $\alpha = 0$ Thermodynamic potential

thermodynamic potential formaly consist of two independent parts

$$\Omega(T,\mu) = \sum_{f=u,d} \Omega_f(T,\mu_f)$$

- no self-consistent analytical solution for space dependent order-parameter
- here: resort to simpler shapes

$$S_f(z) = \Delta_f \cos{(q_f z)}, \quad P_f(z) = \Delta_f \sin{(q_f z)}$$

• minimize Ω w. r. t. $(\Delta_u, \Delta_d, q_u, q_d)$

No flavor mixing: $\alpha = 0$ Phase structure for non-vanishing μ_I

maximally coupled quark flavors: α = 0.5

uncoupled quark flavors: α = 0

maximally coupled quark flavors: $\alpha = 0.5 \checkmark$

 M_n, M_d

100

maximally coupled quark flavors: $\alpha = 0.5 \checkmark$

300

60 MeV

360

400

0 MeV

300

 $M_{\rm m}, M_{\rm d}$

June 10th, 2014 | Institut für Kernphysik | D. Nowakowski | 14

Summary & Outlook

Maximally coupled quark flavors α = 0.5

- ► inhomogeneous chiral symmetry breaking phases occur below µ_I < µ_I^c
- less sensitive to additional pairing stress if not limited to equal periodicities

Summary & Outlook

Maximally coupled quark flavors α = 0.5

- ► inhomogeneous chiral symmetry breaking phases occur below µ_I < µ_I^c
- less sensitive to additional pairing stress if not limited to equal periodicities

Uncoupled quark flavors α = 0.0

- formalism for inhomogeneous phases extended to generalized four-fermion interaction
- inhomogeneous chiral symmetry breaking phases still occur

Outlook

- neutron star matter \sim electric charge neutrality and β -equilibrium
- two-dimensional lattice where up and down quark condensates vary independently in different directions?
- consider more interactions, e. g.
 - vector interaction ~> talk by M. Schramm on monday
 - inhomogeneous charged pion condensation or color superconductivity

