Hadrons in the NJL model

Benjamin Sintes

June 10, 2014

Benjamin Sintes Hadrons in the NJL model

< 一型

< ∃ →

э

з

1 The Nambu-Jona-Lasinio model

- 3 The Polyakov NJL model
- 4 Baryochemical potential

Mesons The Polyakov NJL model Baryochemical potential Baryons Summary

Quantum ChromoDynamics

Confinement

- Quarks are confined in hadronic matter, baryons or mesons, and are never observed separately.
- Perturbative QCD (pQCD) can be used for high energy physics.
- The lattice QCD (IQCD) : is used to solve numerically the QCD Lagrangian on a lattice of points in space and time
- Low energy models

Mesons The Polyakov NJL model Baryochemical potential Baryons Summary

Phase diagramm of QCD

Benjamin Sintes Hadrons in the NJL model

The Nambu-Jona-Lasinio model Mesons The Polyakov NJL model

he Polyakov NJL model Baryochemical potential Baryons Summarv

The Nambu and Jona-Lasinio model

- Originaly a theory of nucleons similar to the BCS theory of superconductivity.
- We only use quarks as degrees of freedom because we assume gluon degrees of freedom are frozen in the low energy limit.
- Construct to have the same symmetries as QCD.

Mesons The Polyakov NJL model Baryochemical potential Baryons Summary

QCD symmetries

•
$$L_{QCD} = \bar{\psi}(iD - m_o)\psi - \frac{1}{4}F^a_{\mu\nu}F^{\mu\nu}_a$$

• A symmetry in the Lagrangian implies a conserved current.

Symmetry	Name	Current
$U_{v}(1)$	Baryonic	$ar{\psi}\gamma_{\mu}\psi$
$U_A(1)$	Axial	$ar{\psi}\gamma_{\mu}\gamma_{5}\psi$
$SU_V(3)$	Vector	$ar{\psi}\gamma_\mu\lambda_a\psi$
$SU_A(3)$	Chiral	$\bar{\psi}\gamma_{\mu}\gamma_{5}\lambda_{a}\psi$

• Isospin symmetry in parameters set.

Lagrangian NJL

- Lagrangian : $L_{NJL} = \bar{\psi}(i\partial m_o)\psi + G\sum_{a}[(\bar{\psi}\lambda^{a}\psi)^{2} + (\bar{\psi}\gamma_{5}\lambda^{a}\psi)^{2}] K[\det\bar{\psi}(1+\gamma_{5})\psi + \det\bar{\psi}(1-\gamma_{5})\psi]$
- Static approximation : Interaction between two quark currents by the exchange of a pointlike gluon.

- Non-renormalizable theory, we need to apply a cut-off.
- Don't include confinement

Gap equation

- The Hartree approximation reduces the N-body interaction to an interaction with a mean field.
- $(\bar{\psi}\lambda_a\psi)^2 \rightarrow 2\bar{\psi}\lambda_a\psi. < \bar{\psi}\lambda_a\psi >$
- The linearization of the interaction in the mean field approximation is like closing the quark loop.

- This defines a dynamical fermion mass :
 - $m_i = mo 2G < q_i\bar{q}_i > -2K < q_j\bar{q}_j > < q_k\bar{q}_k >$
- Breaking of the chiral symmetry

Mesons The Polyakov NJL model Baryochemical potential Baryons Summary

Quarks condensates

Matsubara Formalism

• The Matsubara Green's function is antiperiodic over an imaginary time

$$\begin{split} S(x, x', \tau, \tau') &= \frac{1}{\beta} \sum_{n} e^{i\omega_{n}(\tau - \tau')} \int \frac{d^{3}p}{(2\pi)^{3}} S(p, \omega_{n}) e^{ip(x - x')} \\ \text{Which allows us to introduce the Fermi-Dirac distribution} \\ \frac{1}{\beta} \sum_{n} e^{i\omega_{n}\eta} \frac{1}{i\omega_{n} \mp E_{p}} &= f(\mp E_{p}) \end{split}$$

• Quarks condensates also depends on quarks masses

$$\ll \psi \bar{\psi} \gg = -m \frac{N_c N_f}{\pi^2} \int dp \frac{p^2}{E_p} [1 - f^+(p,\mu) - f^-(p,\mu)]$$

• We need to solve a system of equations

Mesons The Polyakov NJL model Baryochemical potential Baryons Summary

Quark masses

• Quark condensates are the order parameter of the transition phase.

Mesons The Polyakov NJL model Baryochemical potential Baryons Summary

Parameter set

	P1	<i>R</i> . <i>K</i> -Costa		
т ₀ и	4.75	5.5		
m ₀ s	147	140.7		
$G.\Lambda^2$	1.922	1.835		
$K\Lambda^5$	10.0	12.36		
G _V	0.31 <i>G</i>	0.295		
Λ	708	602.3		

• One parameter will be added for the diquark sector

Bethe Salpether

• In the Random Phase Approximation :

• $T(q^2) = G + G\Pi(q^2)G + G\Pi(q^2)G\Pi(q^2)G + ... = \frac{G}{1 - G\Pi(q^2)}$

•
$$T(q^2) = K_1 . \frac{i.g_{\pi q \bar{q}}^2}{q^2 - m^2} . K_2$$

- The mass of the pion mode is determined by the pole.
- The coupling constant is given by an expansion around the pole : $g_{\pi q \bar{q}}^2 = (\frac{\partial \Pi}{\partial q^2})^{-1}|_{q^2 m^2}$

Polarisation Function

• The loop is obtained by integrating over the quarks propagators

$$\begin{split} \Pi(q^2) &= N_c T \sum \int \frac{d^3 p}{(2\pi)^3} Tr[iS^f(i\omega_n,\overrightarrow{p}).\Gamma.iS^f(i\omega_n-i\nu_m,\overrightarrow{p}-\overrightarrow{k}).\Gamma] \\ \Gamma &= i\gamma_5 \text{ for pseudoscalar mesons} \end{split}$$

• Trace as to be performed in color and flavor spaces.

Pion

From another model : P1

• Tc around 240 MeV

Kaon with P1

Benjamin Sintes Hadrons in the NJL model

Mesons

Mesons[T=0]	Pion	Kaon	<i>a</i> 0	K ₀	a ₁	K_1	ρ	K_0^*
Mass[MeV]	136	548	979	1178	1171	1388	746	912
Width[MeV]	-	-	194	200	434	464	-	-

æ

PNJL

- The Polyakov loop serves as an order parameter for the confinement in a pure gauge theory
- Parameters are from pure-gauge lattice data and some thermodynamic quantities
- The expectation value of the Polyakov loop is related to the change of free energy
- We add a potential to our lagrangian

PNJL Lagrangian

•
$$L_{NJL} = \bar{\psi}(i\partial - m_o)\psi + G\sum_{a}[(\bar{\psi}\lambda^a\psi)^2 + (\bar{\psi}\gamma_5\lambda^a\psi)^2] - K[\det\bar{\psi}(1+\gamma_5)\psi + \det\bar{\psi}(1-\gamma_5)\psi] - U(\phi,\bar{\phi},T)$$

(日) (同) (三) (三)

Polyakov loop

[2] Phase diagram and critical properties within an effective model of QCD: the Nambu-Jona-Lasinio model coupled to the Polyakov loop, P.Costa, M.C.Ruivo, C.A.de Sousa, H.Hansen

Quarks PNJL

< 一型

Pion PNJL

Transition phase around 270 MeV

NJL vs PNJL

Benjamin Sintes Hadrons in the NJL model

æ

-

Baryochemical potential

Mesons

э

< 一型

æ

Kaons

Here we use : $\mu_s=0$

- System of a quark and a diquark
- We consider that the exchange quark is heavy enough to use the static approximation

Fierz Transform

• A mathematic transformation allows to reorganize the indices

•
$$L_{int} = g(\overline{q}\Gamma q)^2 = g\Gamma_{ij}\Gamma_{kl}\bar{q}_iq_l\bar{q}_kq_j$$

•
$$L_{int} = g \Gamma_{ij} \Gamma_{kl} \bar{q}_i \bar{q}_k q_l q_j = L_{qq}$$

Diquarks

• Can be treated like a meson by replacing the antiquark by a charge conjugated quark

•
$$L_{qq} = G_{Diq}(\bar{q}\Gamma C \bar{q}^T)^2 (q^T C \Gamma q)^2 q_j$$

•
$$G_{Diq} = \frac{3}{4}G$$

Diquark[qq]

Diquark[qs]

Other sector

Diqu	ark	[ud] ₅	[us]s	[<i>ud</i>] _{PS}	[<i>us</i>] _{PS}
Mass[I	VleV]	674		795	929	1146
Width[MeV]	-		-	91	126
$[ud]_V$	$[us]_V$	$[ud]_A$	1	[<i>us</i>]_		
1229	1430	847		1017		
714	734	-		-		

< 口 > < 同

-2

Results

Masses (MeV)	Costa	P1	Experimental
u	367,6	424,2	
S	549,5	626,5	
Pion	135,0	135,9	135
Kaon	497,7	548,5	498
Diquark [ud]	525,6	599,1	623
Diquark [us]	700,9	794,8	-

æ

Baryon Vertex

- All the possibles exchanges have to be projected on the wavefunction.
- We obtain a matrix equation, in Dirac and flavour spaces.

Coupling Constant

Coupling Constant

Benjamin Sintes Hadrons in the NJL model

Proton

э

< 一型

æ

• We can reproduce mesons and diquarks masses or baryons with a parameter set.

- Outlook
 - We need to find a parametrization where baryons are bound
 - Cross sections need to be added