Hard probes in pp collisions and the event generator EPOS

B. GUIOT K. WERNER

Subatech, guiot@subatech.in2p3.fr

ubotech

NeD/TURIC, 2014

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS

2 Pomerons and hard probes production

Prompt photons

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS

< ∃ →

-

Pomerons and hard probes production

Prompt photons

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

EPOS is an event generator for Heavy lons Collisions with a unified formalism for pp pA and AA collisions:

- Good results for collective behavior observables
 ⇒ see Klaus's talk
- Missing ingredient : heavy flavors, prompt photons
 ⇒ Couldn't be done like in pythia which is based on factorization formula

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Our project : implementation of hard probes in EPOS

- Useful for experimentalists
- Test for theories/models :

Study of the QGP :

- Heavy quark correlation
- Isolated photon/ charged particles correlation
 →modification of fragmentation functions by the medium

γ jet

Small x study (includes cold matter effects):

- Multiplicity of D mesons
- Gluon distribution
- R_{pA} for D mesons
- Test of "basic QCD" :
 - partonic cascades
 - QCD cross sections

ロト ・ 同ト ・ ヨト ・ ヨト

2 Pomerons and hard probes production

Prompt photons

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS

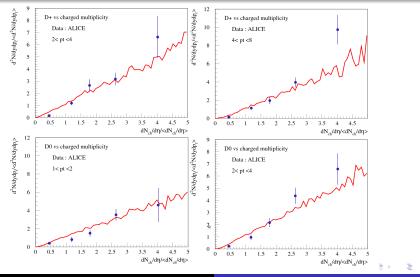
▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Multiple scattering in EPOS

Multiple scattering : pQCD and Gribov-Regge theory + Saturation

- Seen in experiments at high energy (Ref : X.N. Wang and M. Gyulassy, Phys. Rev D 45, 844 (1992))
- Needed for theoretical reasons : $\sigma_{tot}(s)$ violates the Froissart bound with just one interaction
- Multiple pomerons exchange :

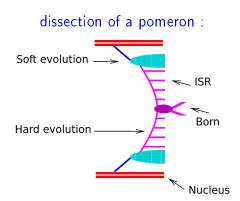
Multiple scatterings (in parallel !!) in pp, pA, or AA


$\frac{\text{Cut pomeron} \rightarrow \text{particles}}{\text{production}}$

- Multiplicity ∝ # of cut pomerons
- hard probes ∝ # of cut pomerons

Linear rise of hard probes with the multiplicity of charged particles

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS

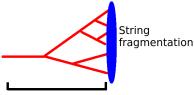

D mesons vs multiplicity

B. GUIOT, K. WERNER

Hard probes in pp collisions and the event generator EPOS

Hard probes production

Hard probes produced during :


- Hard evolution
- Born process = σ_{QCD} at L.O

emission probability : $dP(z, Q^2) \propto \frac{\alpha}{2\pi} \frac{p(z)}{Q^2} \Delta(Q_0^2, Q^2)$

 The same formalism (and parameters) for prompt photons and heavy quarks

... and timelike cascade \otimes fragmentation

ISR and out born particles have $Q^2 \neq 0 \Rightarrow$ timelike cascade

Relevant processes :	
$g ightarrow c \overline{c}$	$q ightarrow q \gamma$
c ightarrow cg	

timelike cascade = resummation of collinear divergences

• Emissions at small angle $dP(z, Q^2) \propto \frac{\alpha}{2\pi} \frac{p(z)}{Q^2} \Delta(Q_0^2, Q^2) +$ angular ordering

EPOS : a "real" event generator

1 LHC event = 1 EPOS event

I All kind of particles produced and registered in final tables

- Not the case in Pythia (where one has to choose processes of interest) or Jetphox
- We can (and have to) do the same experimental treatment for our final particles

 \Rightarrow anti-kt for jets, isolation, background subtraction ...

- \Rightarrow Ideal for comparison with experiments
 - Remark : Even in that case, not easy to be sure that we are looking at exactly the same observable

4 日 2 4 周 2 4 月 2 4 月 2 4

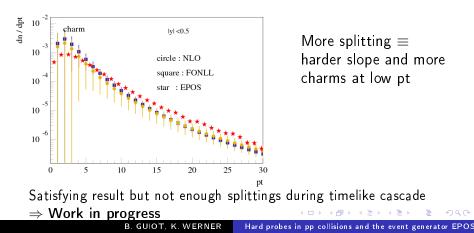
Our project

2 Pomerons and hard probes production

Prompt photons

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS

▲ □ ▶ ▲ □ ▶ ▲ □ ▶


- Test of charm implementation : Try to reproduce experimental results for D mesons
- 2 Later, charms could be used for the study of the QGP
 - R_{pA} , R_{AA}
 - Heavy quarks correlations \rightarrow Information on energy loss mechanisms.

⇒Project with J. Aichelin, P.B Gossiaux, K. Werner, M. Nahrgang and Vitalii Ozvenchuk.

イロト イポト イヨト イヨト

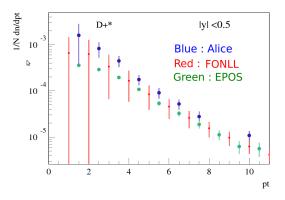
Charm vs NLO and FONLL

• A precise treatment of timelike cascade is essential for heavy quarks

D mesons measurement

No additional or modified parameter for D mesons and photons

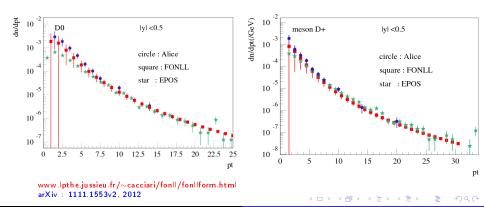
Alice collaboration 2012, arXiv 1312.1233. Measurement of :


- D^{+*}
- D^+ = prompt D^+ and decays from D^{+*}
- D0 = prompt D0 and decays from D^{+*} and $D0^*$

 D^{*+} contributes to the D0 and D^+ p_t spectrum. The spectrum of the D^{*+} need to be well reproduced

• Rem :
$$\Sigma$$
 of D meson fractions > 1

▲ □ ▶ ▲ □ ▶ ▲ □ ▶


(unavoidable) D^{+*}

- IN agreement with FONLL and data, except at low pt
- $M_{charm} = 1.5$ GeV for both EPOS and FONLL

D0 and D+ mesons

- Good agreement with FONLL and ALICE data
- Not enough D mesons at low pt

B. GUIOT, K. WERNER

Hard probes in pp collisions and the event generator EPOS

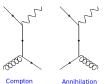
2 Pomerons and hard probes production

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Goals

Some definitions (in pp collisions)


- Direct photon : produced during the born process
- fragmentation photon : produced in spacelike/timelike cascade
- prompt photon = Fragmentation + direct photons
- \bullet Test of γ implementation : Try to reproduce experimental
- Direct photons/charged particles correlations : provides an (approximate) measurement of quark fragmentation functions
 - Could be used for the study of the QGP

 \Rightarrow Need to separate contributions from direct and fragmentation photon...

イロト イポト イヨト イヨト

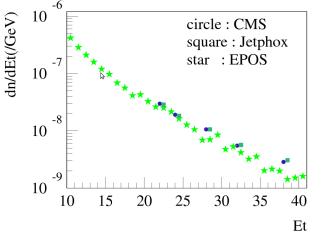
Isolated photons

• Direct photons : produced at $\sim \pi$ of the rest of the matter

• Fragmentation photons : produced at small angle during the final timelike cascade \rightarrow surrounded by several particles

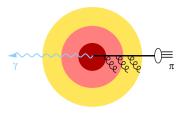
Isolation criteria :

- **③** Define a cone $R=\sqrt{\Delta\phi^2+\Delta\eta^2}$ around the photon
- 3 Isolated if $\sum p_t < p_t^{MAX}$ GeV, p_t : transverse momentum of particles in the cone
 - \rightarrow Strong suppression of fragmentation photons


Implementation of isolated photons

• Isolation subroutine : like in experiments, we define a cone $R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$ around a triggered photon

Event generator with a complete particles production :

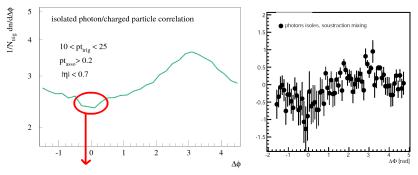

 \Rightarrow realistic isolation (In Jetphox done by calculation \rightarrow non-physical effect) \Rightarrow Able to reproduce sophisticated observables

Isolated photon distribution

In good agreement with Jetphox and CMS

Isolated photon/charged particle correlation : ALICE

Aim :

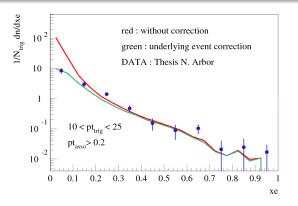

- $xe = -\frac{p_t asso}{p_t^{trig}} \cos(\Delta \phi) \simeq \text{quark}$ fragmentation function
- Comparison of *xe* for pp and PbPb collisions

Measurement :

Isolation :	Additional criteria :
R=0.4 $\sum p_t > 1 { m GeV}$	$p_t^{trig} \in [10, 25] + ext{highest} \ p_t ext{ of the event} \ p_t^{asso} > 0.2 ext{ GeV}$
	◆□ ▶ ◆昼 ▶ ◆臣 ▶ ◆臣 ● ● ●

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS

Azimuthal correlations



- "Anti-correlation" reproduced : less particles around the isolated photon
- The two plots are comparable

(ref: thesis, N. Arbor, 2013)

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS

Xe Alice

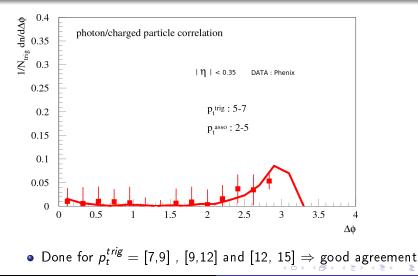
• Regions for underlying event evaluation : $[\pi/3,2\pi/3]$ and $[4\pi/3,5\pi/3]$

(ref: thesis, N. Arbor, 2013)

Isolated photon/charged particle correlation : Phenix

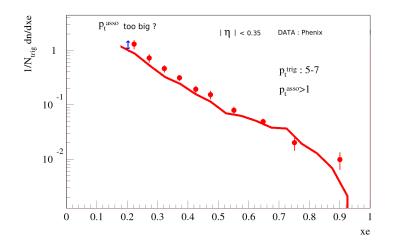
Aim :

- Comparison of fragmentation functions in pp and AuAu collisions
- Evaluation of k_t effect (correction to the back to back picture)


Isolation :

- *R* = 0.3
- $\Sigma E < 0.1 * E_{photon}$

Simulation with EPOS :

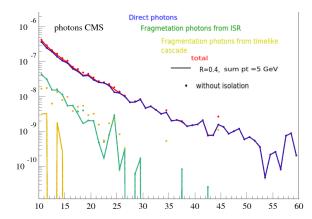

- Just try to reproduce data to test our model
- Could be interesting to look at fragmentation functions or k_t effect directly inside EPOS

Photon/charged particles correlation

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS

Xe Phenix

B. GUIOT, K. WERNER Hard probes in pp collisions and the event generator EPOS


< /i>

Summary

- Good results for D mesons, except at low pt
 ⇒ The partonic cascade need to be improved
- Pt spectra and correlations of photons with charged particles in good agreement with data
 - a "real" event generator makes comparison with experiments easier/possible
- Hard probes could now be used for all kind of studies
 - Outlook :
 - Implementation of new particles : bottom, ${\sf J}/\psi$
 - Heavy quarks correlation (work in progress)

acknowledgment : projet together, Region des pays de la Loire

Study of isolation criteria

э