Confronting current NLO charged-hadron fragmentation functions with LHC data TURIC 2014

Ilkka Helenius

in collaboration with

D. d'Enterria, K.J. Eskola, and H. Paukkunen

Nuclear Physics B 883 (2014) 615-628

University of Jyväskylä, Department of Physics Helsinki Institute of Physics

June 11

Introduction

- Motivation
- Collinear factorization
- Fragmentation functions 2
 - Comparison between FF sets
 - z sensitivity
 - Sensitivity to gluon FFs

Comparison with the data

- Unidentified charged hadrons
- Identified charged hadrons
- p+Pb collisions

4 Summary & Conclusions

Motivation

• Isolated photons at the LHC

- Very well described by NLO pQCD
- Same holds also for inclusive jets

Motivation

• Isolated photons at the LHC

- Very well described by NLO pQCD
- Same holds also for inclusive jets

 NLO pQCD with recent FFs overshoots the data by factor of 2!

Goal: Quantify the observed inconsistency and try to identify the origin

Inclusive hadron production in p+p collisions

$$\mathrm{d}\sigma^{p+p\to h+X} = \sum_{i,j,k,X'} f_i(x_1,Q^2) \otimes f_j(x_2,Q^2) \otimes \mathrm{d}\hat{\sigma}^{ij\to k+X'} \otimes D^h_k(z,Q^2_F)$$

- $f_i(x,Q^2)$ are the parton distribution functions (PDFs)
- $\mathrm{d}\hat{\sigma}^{ij \to k+X'}$ is the partonic piece calculated from pQCD
- $D_k^h(z,Q_F^2)$ is the parton-to-hadron fragmentation function (FF)

Global DGLAP analysis

• Parametrize $D_i^h(z,Q^2)$ at the initial scale Q_0

$$D_i^h(z, Q_0^2) = N_i z^{a_i} (1 - z^{b_i}) F(z, c_i, \ldots)$$

② Use DGLAP evolution equations to calculate $D^h_i(z,Q^2)$ at $Q>Q_0$

$$\frac{\partial D_i^h(z,Q^2)}{\partial \log Q^2} = \frac{\alpha_s}{2\pi} \sum_j P_{ij} \otimes D_j^h(z,Q^2)$$

Sit to wide range of data to obtain the parameters

Comparison between FFs

- The PDFs and pQCD seem okay (photons, jets)
- How about fragmentation functions?
- Currently there are several analyses for the charged hadron FFs available:

FF set	Species	Fitted data	uncert.	$z_{ m min}$	$Q^2 [{ m GeV^2}]$
Kretzer (kre)	π^{\pm} , K^{\pm} , $h^+ + h^-$	e^+e^-	no	0.01	$0.8 - 10^6$
kkp	$\pi^+ {+} \pi^-$, $K^+ {+} K^-$	e^+e^-	no	0.1	$1 - 10^4$
	$p+ar{p}$, h^++h^-				
bfgw	h^{\pm}	e^+e^-	yes	10^{-3}	$21.2\cdot10^4$
akk05	π^\pm , K^\pm , p , $ar p$	e^+e^-	no	0.1	$2 - 4 \cdot 10^4$
hkns	π^\pm , K^\pm , $p+ar{p}$	e^+e^-	yes	0.01	$1 - 10^{8}$
akk08	π^\pm , K^\pm , p , $ar p$	$\mathrm{e^+e^-}$, p-p	no	0.05	$2 - 4 \cdot 10^4$
dss	π^\pm , K^\pm , p , $ar p$, h^\pm	$\mathrm{e^+e^-}$, p-p, e-p	yes	0.05	$1 - 10^5$

- Only AKK08 and DSS include data from p+p collisions (DSS include also SIDIS data)
- Only HKNS provides error estimates that quantify how the uncertainties in the fit propagate to observables

• Comparison of quark (left) and gluon (right) FFs as function of z

- \bullet Quark-to-hadron FFs well constrained by the $\mathrm{e^+e^-}$ data
- $\bullet\,$ Large deviations in the gluon-to-hadron FFs, especially at z>0.5

Inclusive hadron production: The z sensitivity

- $\bullet\,$ Very small contribution from theoretically difficult z<0.1
- $\bullet\,$ The dominant z values depend on the chosen FF set
- Common features:
 - Larger $p_T \Rightarrow$ sensitivity to larger z
 - Larger \sqrt{s} \Rightarrow sensitivity to smaller z

Sensitivity to quark and gluon FFs

• The relative contributions to cross sections from $D_g^{h^++h^-}(z,Q_F^2)$ (solid) and from $\sum_q D_q^{h^++h^-}(z,Q_F^2)$ (dashed)

- Gluons dominate up to the highest p_T
- Exact contributions depend on the FF set

Comparison between data and NLO calculation (using INCNLO with CT10)

• Discrepancy beyond experimental uncertainties

Comparison between data and NLO calculation (using INCNLO with CT10)

• Discrepancy beyond experimental uncertainties (CMS & ALICE agree)

- Discrepancy beyond experimental uncertainties (CMS & ALICE agree)
- PDF uncertainties small

- Discrepancy beyond experimental uncertainties (CMS & ALICE agree)
- PDF uncertainties small, scale uncertainties large at $p_T \lesssim 10 \, {\rm GeV}$

$$\begin{pmatrix} \frac{\mu_{\rm ren}}{p_{\rm T}}, \frac{\mu_{\rm fact}}{p_{\rm T}}, \frac{\mu_{\rm frag}}{p_{\rm T}} \end{pmatrix} = \begin{array}{ccc} (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}), & (\frac{1}{2}, 1, \frac{1}{2}), & (1, \frac{1}{2}, \frac{1}{2}), & (1, 2, \frac{1}{2}), & (2, 1, \frac{1}{2}), & (2, 2, \frac{1}{2}) \\ (\frac{1}{2}, \frac{1}{2}, 1), & (\frac{1}{2}, 1, 1), & (1, \frac{1}{2}, 1), & (1, 2, 1), & (2, 1, 1), & (2, 2, 1) \\ (\frac{1}{2}, \frac{1}{2}, 2), & (\frac{1}{2}, 1, 2), & (1, \frac{1}{2}, 2), & (1, 2, 2), & (2, 1, 2), & (2, 2, 2) \end{pmatrix}$$

- Discrepancy beyond experimental uncertainties (CMS & ALICE agree)
- PDF uncertainties small, scale uncertainties large at $p_T \lesssim 10 \, {\rm GeV}$
- Large deviations between different FF sets

- Discrepancy beyond experimental uncertainties (CMS & ALICE agree)
- PDF uncertainties small, scale uncertainties large at $p_T \lesssim 10 \, {\rm GeV}$
- Large deviations between different FF sets
 - Especially the FF fits with low \sqrt{s} p+p data overshoot the data

- Discrepancy beyond experimental uncertainties (CMS & ALICE agree)
- PDF uncertainties small, scale uncertainties large at $p_T \lesssim 10 \, {\rm GeV}$
- Large deviations between different FF sets
 - Especially the FF fits with low \sqrt{s} p+p data overshoot the data

- Discrepancy beyond experimental uncertainties (CMS & ALICE agree)
- PDF uncertainties small, scale uncertainties large at $p_T \lesssim 10 \, {\rm GeV}$
- Large deviations between different FF sets
 - Especially the FF fits with low \sqrt{s} p+p data overshoot the data

- Discrepancy beyond experimental uncertainties (CMS & ALICE agree)
- PDF uncertainties small, scale uncertainties large at $p_T \lesssim 10 \, {\rm GeV}$
- Large deviations between different FF sets
 - Especially the FF fits with low \sqrt{s} p+p data overshoot the data

- Discrepancy beyond experimental uncertainties (CMS & ALICE agree)
- PDF uncertainties small, scale uncertainties large at $p_T \lesssim 10 \, {\rm GeV}$
- Large deviations between different FF sets
 - Especially the FF fits with low \sqrt{s} p+p data overshoot the data
- Even the large uncertainty band from HKNS not consistent with the data

Charged hadron production at different \sqrt{s}

• Conclusions are the same for all $\sim {
m TeV}$ -energies at high p_T

Charged hadrons at lower \sqrt{s}

p+p data used in the present FF fits (DSS and AKK08):

- Here Kretzer clearly below the data
- DSS gives a good describtion of the data
- $\bullet\,$ Only few data points above $p_T>10\,{\rm GeV/c}$ and those with large uncertainties
- Constraints from data mostly from the region $p_T < 5 \,\mathrm{GeV/c}$ where the theoretical uncertainties (=scale variations) are very large

[To appear in my Thesis]

 $\bullet\,$ Kaon-to-pion and proton-to-pion ratios at $\sqrt{s}=2.76\,{\rm TeV}$

- Qualitative agreement in kaon-to-pion ratio (with Kretzer FFs even quantative)
- The measured proton-to-pion ratio not consistent with independent fragmentation at $p_T < 10 \text{ GeV/c} \Rightarrow \text{Non-perturbative effects}$?
- At $p_T > 10 \, {\rm GeV/c}$ qualitative agreement with data

- Similar behaviour as in p+p:
 - DSS overshoots the data
 - Kretzer consistent
 - Large scale uncertainty!

• FF differences in dN cancel out in ratio R_{pPb} $\Rightarrow R_{pPb}$ not sensitive to FFs

• At $p_T \gtrsim 10 \,\text{GeV/c}$ the data/NLO ratios are flat for both p+p and p+Pb \Rightarrow The ALICE baseline seems to be in control up to $p_T = 40 \,\text{GeV/c}$

- Disclaimer: CMS spectra read "by eye" (from H. Paukkkunen)!
- Rise in CMS data/NLO ratio at $p_T > 50 \,\mathrm{GeV/c}$ in both p+p and p+Pb

Summary

- NLO pQCD calculations overshoot the charged hadron data in p+p collisions at the LHC energies
 - Especially the recent FFs with low- $\sqrt{s},$ low p_T p+p data included are clearly above the data
- Similar behaviour is observed in ALICE p+Pb data
 - ullet However, the differences between different FFs cancel in ratios like $R_{\rm pPb}$

Conclusions

- This behavior is due to the too hard gluon-to-hadron FFs
 - $\Rightarrow~{\rm Calls}$ for a complete re-analysis of the FFs using the high- \sqrt{s} data at $p_T>10\,{\rm GeV/c}$

 \bullet Supported also by ALICE data for $(p+\bar{p})/(\pi^++\pi^-)$

Backup

Charged pion cross section

Charged pions in p+p collisions

- Data consistent within the uncertainties when using Kretzer FFs
- With DSS and KKP calculation a factor two of above the ALICE data

Comparison with data

 χ^2/N values for different FF sets with different scales

$$\chi^2 \equiv \sum_i \left(\frac{D_i - T_i}{\delta_i^{\text{tot}}}\right)^2$$

Scales choices: $\mu \equiv (\mu_{\rm ren}/p_{\rm \scriptscriptstyle T}, \mu_{\rm fact}/p_{\rm \scriptscriptstyle T}, \mu_{\rm frag}/p_{\rm \scriptscriptstyle T})$

μ	(1,1,1)			(1/2,1/2,1/2)			(2,2,2)		
$p_{_{ m T}}^{ m min}[{ m GeV/c}]$	1.3	5.0	10.0	1.3	5.0	10.0	1.3	5.0	10.0
N	368	169	103	368	169	103	368	169	103
kre	5.512	8.536	11.20	32.94	30.03	23.06	12.77	4.034	2.935
kkp	28.90	51.63	56.81	151.6	143.3	108.2	9.216	14.62	19.25
dss	63.36	112.3	114.2	248.5	319.5	245.6	16.68	33.50	40.96
hkns	85.80	149.5	151.1	303.9	396.8	312.6	24.28	48.59	57.49
akk05	169.9	236.7	218.4	594.6	619.0	428.9	51.39	84.58	89.88
akk08	150.1	177.7	154.4	566.6	486.5	300.3	40.82	59.13	60.70
bfgw	57.15	106.3	108.7	203.2	294.1	230.5	15.71	31.65	38.70

Same conclusions as "by eye":

- Best agreement with the Kretzer FFs with softest gluons
- Agreement is improved with $p_T^{\min} = 10 \, {\rm GeV/c}$

Correlated systemic uncertainties separately:

$$\chi_{\rm corr}^2 = \sum_{k \in \text{data sets}} \chi_k^2, \qquad \chi_k^2 = \sum_i \left(\frac{f_k D_i - T_i}{\delta_i^{\rm uncor}}\right)^2 + \left(\frac{1 - f_k}{\delta_i^{\rm norm}}\right)^2$$

 f_k determined from χ^2 minimization

μ	(1,1,1)			(1/2, 1/2, 1/2)			(2,2,2)		
$p_{_{ m T}}^{ m min}[{ m GeV/c}]$	1.3	5.0	10.0	1.3	5.0	10.0	1.3	5.0	10.0
N	368	169	103	368	169	103	368	169	103
kre	5.460	5.063	5.158	11.73	9.675	10.25	5.020	3.402	2.031
kkp	14.54	17.97	22.34	36.06	37.69	43.16	8.893	7.648	8.061
dss	31.74	35.11	44.75	113.4	82.19	98.73	13.86	14.00	16.59
hkns	41.30	45.73	58.50	130.9	101.1	123.9	17.58	18.67	22.72
akk05	44.89	66.01	86.08	208.4	159.0	175.9	21.00	27.13	35.42
akk08	29.72	49.73	63.47	160.3	137.1	130.9	15.79	19.42	25.51
bfgw	35.61	33.91	43.09	118.0	77.23	93.59	13.86	13.61	16.18

- χ^2/N values become somewhat lower but yield $|1 f_k|$ beyond experimental uncertainties $\delta_i^{\rm norm}$
- Conclusions the same as with the other method

ALICE measurement for Kaon-to-pion and proton-to-pion ratios:

[arXiv:1304.0899 [hep-ex]]

- $(p + \bar{p})/(\pi^+\pi^-)$ not consistent with independent fragmentation at $p_T \lesssim 8 \text{ GeV/c}$
 - \Rightarrow Shouldn't be used for global fits

New results for charged hadrons in p+Pb

Charged pion $R_{ m pPb}$

• Unidentified charged hadrons sum of pions, kaons and (anti)protons

- Roughly (according to the DSS and KKP analyses):
 - $10\,\%$ protons
 - $20\,\%$ kaons
 - 70% pions
- $\bullet\,$ In DSS analysis the fraction of residual hadrons $\lesssim 2\,\%$

Identified hadrons

Charged pions, kaons and (anti)protons in p+p collisions

- Pion described accurately with Kretzer FFs
- Kaons described well with all considered FFs
- Neither the shape nor the normalization consistent with the data