Energy loss in cold nuclear matter and suppression of forward hadron production.

Rodion Kolevatov², François Arleo¹, Stephane Peigné²

¹LAPTh Annecy & LLR Palaiseau

²SUBATECH, Nantes

3rd NeD/TURIC Workshop, 9–14.VI.2014, Hersonissos, Crete

Motivations

Scaling properties of parton energy loss Coherent induced radiation Hadron suppression data in *pA* collisions E-loss interpretation of forward hadron suppression

Outline

- Motivations
 - Forward hadron suppression in p A collisions
 - Energy loss interpretation of suppression data
- Scaling properties of medium induced radiation
 - Asymptotic parton
 - Parton produced in medium
- Coherent induced radiation
 - The setup
 - The induced radiation spectrum
 - Phenomenology

References

- F. Arleo, S. Peigné JHEP 1303 (2013) 122 [1212.0434]
- F. Arleo, RK, S. Peigné, M. Rustamova JHEP 1305(2013)155 [1304.0901]
- S. Peigné, F. Arleo, RK arxiv:[1402.1671]
- S. Peigné, RK arxiv:[1405.4241]

A tool to study hot and dense matter

• Study of hadron spectra w.r.t. scaled pp and $C_{entral}/P_{eripheral}$ ratios

$$R_{AA/pA}(y, p_t) = \frac{\frac{d^2\sigma}{dydp_t}\Big|_{AA/pA}}{\langle N_{\rm coll} \rangle \frac{d^2\sigma}{dydp_t}\Big|_{AA/pA}}; \quad R_{CP} = \frac{\langle N_{\rm coll} \rangle_P \left. \frac{d^2\sigma}{dydp_t} \right|_{AA/pA, C}}{\langle N_{\rm coll} \rangle_C \left. \frac{d\sigma}{dydp_t} \right|_{AA/pA, P}}$$

- Suppression already seen in p(d)A data
 - Quarkonia production (starting from SPS energies)
 - Forward light hadron production at RHIC
 - Dihadron correlations
- The proper interpretation is important
 - Baseline for hot matter effect studies
 - Initial state of fast nucleus and production mechanisms

Motivations

Scaling properties of parton energy loss Coherent induced radiation Hadron suppression data in pA collisions E-loss interpretation of forward hadron suppression

Examples of suppression in RHIC dAu data

Small-x part of parton distribution is probed from the target side

Hadron suppression data in *pA* collisions E-loss interpretation of forward hadron suppression

Examples of suppression in RHIC dAu data

Two-pion correlations at forward rapidity, coincidence probability

Hadron suppression data in pA collisions E-loss interpretation of forward hadron suppression

Interpretation of forward hadron suppression

Coherent induced radiation

So far two reasonable interpretations exist:

- Saturation of gluon densities in nuclear target
 - Smaller target parton densities at low x
 ⇒ suppression
 - Momentum transfer from target partons $k_t \sim Q_s \sim$ few GeV \Rightarrow dissociation of quarkonia [Fujii Gelis Venugopalan'06]
 - \Rightarrow forward dijet decorrelation

Jalilian-Marian'04

Hadron suppression data in pA collisions E-loss interpretation of forward hadron suppression

Interpretation of forward hadron suppression

So far two reasonable interpretations exist:

- Saturation of gluon densities in nuclear target
 - Smaller target parton densities at low x
 ⇒ suppression
 - Momentum transfer from target partons $k_t \sim Q_s \sim$ few GeV
 - \Rightarrow dissociation of quarkonia
 - \Rightarrow forward dijet decorrelation
- Parton energy loss interpretation
 - Due to induced gluon radiation projectile parton distribution has to be taken at higher x values where it is depleted
 - Only qualitative explanations in some cases.

```
Jalilian-Marian'04
```

```
[Fujii Gelis Venugopalan'06]
```

```
[T.Lappi, H.Mantysaari'12].
```

Interpretation of forward hadron suppression

So far two reasonable interpretations exist:

- Saturation of gluon densities in nuclear target
 - Smaller target parton densities at low x
 - \Rightarrow suppression

- Jalilian-Marian'04
- Momentum transfer from target partons $k_t \sim Q_s \sim$ few GeV
 - \Rightarrow dissociation of quarkonia
 - \Rightarrow forward dijet decorrelation
- Parton energy loss interpretation
 - Due to induced gluon radiation projectile parton distribution has to be taken at higher x values where it is depleted
 - Only qualitative explanations in some cases.

This talk: Mechanism of *coherent* parton energy loss in forward light hadron, di-jet and quarkonia production in pA collisions

Rodion Kolevatov Hadron suppression from coherent E-loss

- [Fujii Gelis Venugopalan'06]
 - [T.Lappi, H.Mantysaari'12].

Gavin-Milana model of J/ψ suppression

First attempt to describe J/ψ suppression via *E*-loss [Gavin Milana'92] Energy loss via the induced initial and final state radiation and scaling (the average) as

$\Delta E \propto E \ L \ M^{-2}$

allows for description of both Drell-Yan and J/ψ suppression at high x_F in E866 ($\sqrt{s} = 38.7$ GeV)

Gavin–Milana model of J/ψ suppression

First attempt to describe J/ψ suppression via *E*-loss [Gavin Milana'92] Energy loss via the induced initial and final state radiation and scaling (the average) as

$\Delta E \propto E \ L \ M^{-2}$

allows for description of both Drell-Yan and J/ψ suppression at high x_F in E866 ($\sqrt{s}=38.7~{\rm GeV})$

Caveats

- \bullet Based on ad hoc assumption $\Delta E \propto E$ for the scaling properties of IS and FS induced radiation
- Failure to describe Υ suppression
- $\Delta E \propto E$ is incorrect for the purely IS and FS induced radiation

Note however the $\Delta E \propto E$ scaling. $\checkmark \Rightarrow \checkmark$

Rodion Kolevatov Hadron suppression from coherent E-loss

Hadron suppression data in pA collisions E-loss interpretation of forward hadron suppression

Forward di-jet suppression from energy loss | Strikman, Vogelsang'10

Target rest frame:

• Back2back fwd jets come from splitting of a parton with $x\sim 1$

- Extra rescatterings in nuclear target lead to induced radiation ⇒ higher x_{proj} needed to produce a dijet with same kinematics
- Suppression is less for uncorrelated contribution (both nucleons can contribute in *dAu*, smaller shift in *x_{proj}*)

Qualitative explanation relying on importance of energy loss

Hadron suppression data in pA collisions E-loss interpretation of forward hadron suppression

Forward di-jet suppression from energy loss | Strikman, Vogelsang'10

Target rest frame:

- Back2back fwd jets come from splitting of a parton with $x\sim 1$
- Extra rescatterings in nuclear target lead to induced radiation
 ⇒ higher x_{proj} needed to produce a dijet with same kinematics
- Suppression is less for uncorrelated contribution (both nucleons can contribute in dAu, smaller shift in x_{proj})

Qualitative explanation relying on importance of energy loss

Asymptotic parton Parton born in medium

Energy loss of asymptotic parton

Radiation formation time: $t_f = \omega/k_t^2$

• Small
$$\omega$$
, $t_f < \lambda$, $L/\lambda \Rightarrow$
Independent radiation at each scattering
 $\omega \left. \frac{dI}{d\omega} \right|_L = \frac{L}{\lambda} \omega \left. \frac{dI}{d\omega} \right|_{\text{single}} \sim \frac{L}{\lambda} \alpha_s$

$$L \frac{1}{\lambda} \frac{\frac{1}{\alpha_s} \omega \frac{dI}{d\omega}}{\frac{1}{\omega_s} \frac{1}{\omega} \frac{\omega}{\omega}}$$

Asymptotic parton Parton born in medium

and k

ώ

Energy loss of asymptotic parton

Radiation formation time: $t_f = \omega/k_t^2$

• Small
$$\omega$$
, $t_f < \lambda$, $L/\lambda \Rightarrow$
Independent radiation at each scattering
 $\omega \frac{dI}{d\omega}\Big|_L = \frac{L}{\lambda} \omega \frac{dI}{d\omega}\Big|_{single} \sim \frac{L}{\lambda} \alpha_s$
• Larger ω , $\lambda \ll t_f \ll L$
 $\Leftrightarrow \lambda \mu^2 \ll \omega \ll \omega_c \equiv \frac{\mu^2 L^2}{\lambda}$
 $t_f = \frac{\omega}{k_t^2(t_f)} = \frac{\omega}{t_f/\lambda\mu^2} = \sqrt{\frac{\lambda\omega}{\mu^2}}$
Medium acts as effective scatt. centers,
 $\omega \frac{dI}{d\omega}\Big|_L \sim \frac{L}{t_f(\omega)} \omega \frac{dI}{d\omega}\Big|_{single} \sim \sqrt{\frac{\omega_c}{\omega}} \alpha_s$

Asymptotic parton Parton born in medium

Energy loss of asymptotic parton

• Even larger
$$\omega \gg \omega_c$$

(Small medium $L < \sqrt{\lambda E/\mu^2} \Leftrightarrow \omega_c < E$) ^{p}

- $t_f \gg L$
- Comes from interference of initial- and final-state emissions
- Medium acts as a single scatt. center $k_t^2 \sim \frac{L}{\lambda} \mu^2$, similar to Gunion-Bertch
- Dominant contribution to the *E*-loss $\Delta E \sim \alpha_s E \ln \frac{\langle k_t^2(L) \rangle}{\Delta 2}$

Asymptotic parton Parton born in medium

Parton born in medium

Different setup: instantly produced parton radiates w/o medium

$$\omega \left. \frac{dI}{d\omega} \right|_{\text{ind}} = \omega \left. \frac{dI}{d\omega} \right|_{L} - \omega \left. \frac{dI}{d\omega} \right|_{L=0}$$

• $\omega < \omega_c \Leftrightarrow t_f < L$

• same as for asympt. charge

• $\omega > \omega_c$

- t_f ≥ L cancels out in the induced spectrum
- Left with radiation of $k_t^2 \sim \omega/L$ • $\omega \frac{dl}{dt} \sim \alpha_s \frac{1}{dt}$

$$d\omega$$
 ω

$$\Delta E \sim lpha \omega_c \sim lpha_s rac{\mu^2 L^2}{\lambda}$$

Asymptotic parton Parton born in medium

Coherent vs incoherent *E*-loss

Initial/final state energy loss

Interference btw. initial and final state emissions can be neglected

- prompt photons, Drell-Yan, weak bosons
- jets and hadrons produced at large angles

Coherent energy loss (asymptotic parton)

Comes from interference between IS and FS emission amplitudes

- Long formation times of induced radiation
- Color charge must be resolved in hard process
- Medium modifications to ∆E due to extra rescatterings induced radiation – also scale as E [Arleo, Peigné, Sami 2011]

イロト イポト イヨト イヨト

Coherent induced radiation, the setup

Working in target rest frame

- tag on final energetic compact color object with $M_t^2 \gg \hat{q} L$
- energetic parent parton suffers
 - single hard exchange $q_t^2 \gg \hat{q}L$
 - multiple semihard $\ell_t^2 \sim \hat{q} L \ll q_t^2$

 $\omega \frac{dI}{d\omega}$ derived in the opacity expansion

[Gyulassy,Levai,Vitev 2000]

Coherent induced radiation, the setup

Working in target rest frame

- tag on final energetic compact color object with $M_t^2 \gg \hat{q} L$
- energetic parent parton suffers
 - single hard exchange $q_t^2 \gg \hat{q}L$
 - multiple semihard $\ell_t^2 \sim \hat{q} L \ll q_t^2$

 $\omega \frac{dl}{d\omega}$ derived in the opacity expansion [Gyulassy,Levai,Vitev 2000] Focus on the part of the induced spectrum which gives $\Delta E \sim E$

- Implies induced radiation with $t_f \gg L$
- Purely Initial State and Final State radiation are affected by the medium only for $t_f \lesssim L \Rightarrow$ negligible
- Only interference terms contribute at $t_f \gg L$

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Coherent induced radiation, the setup

Compact color object in a final state:

- Same color representation for incoming and outgoing object
 - Elastic scattering of a color charge (q or g) tagged with $q_t \gg \hat{q}L$ in the final state

•
$$g
ightarrow q ar{q}$$
, $3 \otimes ar{3} = 1 \oplus 8$

- Different color representations
 - Production of a dijet:

 $q \rightarrow qg$, $3 \otimes 8 = 3 \oplus \overline{6} \oplus 15$

g
ightarrow gg, 8 \otimes 8 = 1 \oplus 8 $_{a}$ \oplus 8 $_{s}$ \oplus 10 \oplus 1 $\overline{0}$ \oplus 27

Lowest order in opacity, same color representation

$$q \to q \text{ and } g \to g(q\bar{q}) \text{ case:}$$

$$x \frac{dI}{dxd^2k_t} = \frac{\alpha_s}{\pi^2} \int \frac{dzd^2\ell}{C_R\lambda_R} V(\ell) \frac{2\text{Re}\left\{\frac{1}{|\mathbf{k}|^2} + \frac{1}{|\mathbf{k}|^2} +$$

3.5

Lowest order in opacity, same color representation

$$q \rightarrow q \text{ and } g \rightarrow g(q\bar{q}) \text{ case:}$$

 $x \frac{dI}{dxd^2k_t} = \frac{\alpha_s}{\pi^2} \int \frac{dzd^2\ell}{C_R\lambda_R} V(\ell) \frac{2\operatorname{Re}\left\{\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right\} + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \downarrow \\ \hline & \downarrow \end{array}\right] + \left[\begin{array}{c} \hline & \hline \end{array}\right] + \left[\begin{array}{c} \hline & \end{array}\right] + \left[\begin{array}{c} \hline & \hline \end{array}] + \left[\begin{array}{c} \hline & \hline \end{array}\right] + \left[\begin{array}{c} \hline & \hline \end{array}\right] + \left[\begin{array}{c} \hline \end{array}] + \left[\begin{array}{c} \hline & \hline \end{array}] + \left[\begin{array}{c} \end{array}$

<u>The answer:</u>

$$q(g) \to q(g): \quad x \frac{dI}{dx} = (2C_R - N_c) \frac{\alpha_s}{\pi} \frac{L}{\lambda_g} \ln\left(1 + \frac{\mu^2}{x^2 q^2}\right)$$
$$g \to q\bar{q}: \qquad x \frac{dI}{dx} = N_c \frac{\alpha_s}{\pi} \frac{L}{\lambda_g} \ln\left(1 + \frac{\mu^2}{x^2 M_t^2}\right)$$

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

All orders in opacity

[Peigné, Arleo, RK 1402.1671]

(日) (同) (三) (三)

Induced radiation spectrum

Peigné, Arleo, RK 1402.1671

(日) (同) (三) (三)

All orders in opacity

g
ightarrow q ar q:

Rodion Kolevatov Hadron suppression from coherent E-loss

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Lowest order in opacity, change of color representation

The production amplitude squared:

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Lowest order in opacity, change of color representation

The production amplitude squared:

 1^{st} order in opacity:

- 1 additional soft gluon
- 1 additional soft scattering
- m ullet ~ 10² possible arrangements, but LOTS of simplifications

- ullet Focus on radiation with long formation times, $t_f \gg t_{
 m hard}$
 - soft g emission in the amplitude from incoming q line and in the conjugate from outgoing q or g line

- ullet Focus on radiation with long formation times, $t_f \gg t_{
 m hard}$
 - soft g emission in the amplitude from incoming q line and in the conjugate from outgoing q or g line
- $q_t \gg \ell_t \Rightarrow$ rescattering couples to soft gluon in the amplitude

- ullet Focus on radiation with long formation times, $t_f \gg t_{
 m hard}$
 - soft g emission in the amplitude from incoming q line and in the conjugate from outgoing g line
- $q_t \gg \ell_t \Rightarrow$ rescattering couples to soft gluon in the amplitude
- Take $N_c \rightarrow \infty \Rightarrow$ non-planar graphs are suppressed $(\frac{1}{N_c^2})$

- Focus on radiation with long formation times, $t_f \gg t_{
 m hard}$
 - soft g emission in the amplitude from incoming q line and in the conjugate from outgoing g line
- $q_t \gg \ell_t \Rightarrow$ rescattering couples to soft gluon in the amplitude
- Take $N_c \rightarrow \infty \Rightarrow$ non-planar graphs are suppressed $(\frac{1}{N_c^2})$

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppressio

The spectrum

Peigné, RK 1405:4241

Lowest order:

$$x\frac{dI^{(1)}}{dx}\bigg|_{q\to qg} = \left[1 + \frac{(1-x_h)^2 \mathbf{K}^2}{(\mathbf{K}-x_h \mathbf{q})^2}\right]^{-1} \frac{N_c \alpha_s}{\pi} \frac{L}{\lambda_g} \log\left(\frac{\mu^2}{x^2 \mathbf{K}^2}\right)$$

< ロ > < 同 > < 回 > < 回 >

э

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

The spectrum

Peigné, RK 1405:4241

э

(日) (同) (三) (三)

All orders:

$$\begin{aligned} x\frac{dI}{dx}\Big|_{q\to qg} &= \sum_{n=1}^{\infty} x\frac{dI^{(n)}}{dx}\Big|_{q\to qg} = \kappa_{q\to qg} \frac{N_c \alpha_s}{\pi} \log\left(\frac{\Delta q_{\perp}^2(L)}{x^2 \kappa^2}\right) \\ \kappa_{q\to qg} &\equiv \frac{(\kappa - x_h q)^2}{(\kappa - x_h q)^2 + (1 - x_h)^2 \kappa^2}.\end{aligned}$$

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

The spectrum

Peigné, RK 1405:4241

All orders:

$$\begin{aligned} x\frac{dI}{dx}\Big|_{q\to qg} &= \sum_{n=1}^{\infty} x\frac{dI^{(n)}}{dx}\Big|_{q\to qg} = \kappa_{q\to qg} \frac{N_c \alpha_s}{\pi} \log\left(\frac{\Delta q_{\perp}^2(L)}{x^2 \kappa^2}\right) \\ \kappa_{q\to qg} &\equiv \frac{(\kappa - x_h q)^2}{(\kappa - x_h q)^2 + (1 - x_h)^2 \kappa^2}.\end{aligned}$$

- For $x_h=1/2$ the spectrum coinsides with the result obtained in the saturation formalism ($\kappa_{q \to qg}=4/5$) [Liou, Mueller 1402.1647]
- A conjecture guided by the outlined spectra

$$\left. x \frac{dI}{dx} \right|_{1 \to n} = \left[\sum_{R'} P_{R'} (C_R + C_{R'} - C_t) \right] \frac{\alpha_s}{\pi} \log \left(\frac{\Delta q_\perp^2(L)}{x^2 \kappa^2} \right)$$

• Prefactor 5/3 for $g \rightarrow gg$ case (checked by an explicit calculation, coincides with saturation result [Mueller, private comm.])

ト ・ 同 ト ・ ヨ ト ・ ヨ ト

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Model for heavy-quarkonium suppression

Physical picture and assumptions

- Color neutralization happens on long time scales: $t_{
 m octet} \gg t_{
 m hard}$
- ullet Hadronization happens outside of the nucleus: $t_\psi\gg L$
- $c\bar{c}$ pair produced by gluon fusion
- Medium rescattering do not resolve the octet $c\bar{c}$ pair

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Model for heavy-quarkonium suppression

Energy shift

Arleo Peigné 1212.0434

$$\frac{1}{A}\frac{d\sigma_{\rm pA}^{\psi}}{dE}\left(E,\sqrt{s}\right) = \int_{0}^{\varepsilon_{\rm max}} d\varepsilon \,\mathcal{P}(\varepsilon, E|\Delta q_{\perp}^{2}) \,\frac{d\sigma_{\rm pp}^{\psi}}{dE}\left(E+\varepsilon,\sqrt{s}\right)$$

• pp cross section fitted from experimental data

$$E \frac{d\sigma_{\rm pp}^{\psi}}{dE} = \frac{d\sigma_{pp}^{\psi}}{dy} \propto (1 - \frac{2M_{\perp}}{\sqrt{s}} \cosh y)^{n(\sqrt{s})}$$

• $\mathcal{P}(\epsilon)$: quenching weight, scaling function of $\hat{\omega} = \sqrt{\hat{q}L}/M_{\perp} \times E$

• Effective length $L_{\rm eff}$ is given by Glauber model, $L_{pp}=1.5~{
m fm}$

$$\hat{q}(L_{eff} - L_{pp}) = \left(\langle N_A^{\text{part}} \rangle_{\psi} - 1 \right) \frac{\sigma_{\text{broad}}}{\sigma_{\text{inel}}} \mu_{\perp}^2 = \hat{q} \frac{\langle N_A^{\text{part}} \rangle_{\psi} - 1}{\sigma_{\text{inel}} \rho_0}$$

Procedure

- Fit \hat{q}_0 from J/ψ E866 data in p W collisions: $\hat{q}_0 = 0.075 \text{ GeV}^2/\text{fm}$
- 2 Predict J/ψ and Υ suppression for all nuclei and c.m. energies

A - E - A - E

 Motivations
 The setup

 Scaling properties of parton energy loss
 Induced radiation spectrum

 Coherent induced radiation
 Phenomenology. Model for J/ψ suppression

Procedure

- Fit \hat{q}_0 from J/ψ E866 data in p W collisions: $\hat{q}_0 = 0.075 \text{ GeV}^2/\text{fm}$
- 2 Predict J/ψ and Υ suppression for all nuclei and c.m. energies

 Fe/Be ratio well described, supporting the L dependence of the model

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

SPS

Rodion Kolevatov

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

RHIC

- Good agreement at all rapidity
- nPDF effects may improve the agreement
- Smaller experimental uncertainties would help

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Comparison with preliminary ALICE data

The setup induced radiation spectrum Phenomenology. Model for J/ψ suppression

Summary

- An honest pQCD calculation of the induced spectrum.
 - Neither initial nor final state effect
 - $dI/d\omega$ and ΔE have specific parametric dependence
- ullet Heavy-quarkonium suppression predicted for wide range of \sqrt{s}
 - Good agreement with all existing data for J/ψ including rapidity (x_F, ρ_{\perp} and centrality dependence
 - Model in good agreement with LHC p Pb preliminary data

Outlook

- The coherent energy loss taken alone underestimates suppression of ψ' at the LHC.
- Application to forward light hadron production is foreseen.

A conjecture

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

BACKUP

Rodion Kolevatov Hadron suppression from coherent E-loss

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

э

MotivationsThe setupScaling properties of parton energy lossInduced radiation spectrumCoherent induced radiationPhenomenology. Model for J/ψ suppression

A conjecture

Motivation for a conjecture:

$$x\frac{dI}{dx}\Big|_{1\to n} = \left[\sum_{R'} P_{R'}(C_R + C_{R'} - C_t)\right]\frac{\alpha_s}{\pi}\log\left(\frac{\Delta q_{\perp}^2(L)}{x^2\kappa^2}\right)$$

ullet Color factors for radiation accompanying elastic R
ightarrow R'

$$2T_R^a T_{R'}^a = (T_R^a)^2 + (T_{R'}^a)^2 + (T_R^a - T_{R'}^a)^2 = C_R + C_{R'} - C_t$$

• Logarithmic integration in k_t:

- Compact object $|\boldsymbol{k}_t| \gg x|\boldsymbol{K}|$
- Constrained by the broadening $m{k}_t \leq \hat{q} L$

The setup induced radiation spectrum Phenomenology. Model for J/ψ suppression

LHC predictions

BACKUP

Rodion Kolevatov Hadron suppression from coherent E-loss

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

LHC predictions

• Weaker suppression for Υ as a consequence of the coherent E-loss scaling properties $\Delta E\propto M_\perp^{-1}$

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

LHC predictions

• Suppression expected up to $p_\perp\simeq$ 3–4 GeV

• Possible enhancement in most central collisions

イロト イポト イヨト イヨト

LHC predictions

• Weaker suppression in the Υ channel, which however extend to slightly larger p_\perp

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Comparison with preliminary ALICE data

- No pp data at 5 TeV needed ightarrow smaller uncertainty
- Predictions with only nPDF underestimate the suppression

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Comparison with preliminary ALICE data

R_{FB}(*p*_⊥): good agreement, better agreement with energy loss supplemented by shadowing

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

↑ suppression at 7 TeV

• Weaker suppression for Υ as a consequence of the coherent *E*-loss scaling properties $\Delta E \propto M_{\perp}^{-1}$

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Comparison with preliminary ALICE data

- No pp data at 5 TeV needed ightarrow smaller uncertainty
- Predictions with only nPDF underestimate the suppression

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

E866 p_t dependence

- Good description of $R_{
 ho A/
 ho B}$ for $p_t \lesssim$ 3 GeV
- Possible reasons for discrepancy at $p_t > 3$ GeV:
 - Model calculations at fixed x_F rather than averaging
 - p_t dependence from fit to E789 pp data at $x_E = 0$.

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Backup - HERA-B

- Also good agreement in the nuclear fragmentation region $(x_{\rm F} < 0)$
- Enhancement predicted at very negative x_F

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Backup – $L_{\rm eff}$ vs centrality

Glauber, RHIC					Glauber, LHC				
class	$N_p^{\min}; N_p^{\max}$	$\frac{P(\text{class})}{P(N \ge 1)}$	$\langle N_c \rangle$	L_{Au}	class	$N_p^{\min}; N_p^{\max}$	$\frac{P(\text{class})}{P(N \ge 1)}$	$\langle N_c \rangle$	L_{Pb}
Α	11; 197	0.28	15.9	12.87	1	12; 208	0.246	14.8	13.46
В	8; 12	0.24	10.9	9.62	2	9; 12	0.215	10.5	9.55
С	5; 8	0.23	7.0	7.17	3	5; 8	0.215	6.5	6.29
D	2; 4	0.29	3.6	3.84	4	1; 5	0.428	2.4	3.39

Rodion Kolevatov Hadron suppression from coherent E-loss

イロト イポト イヨト イヨト

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Extrapolating to other energies

Two competing mechanisms might alter heavy-quarkonium suppression

• Nuclear absorption if hadron formation occurs inside the medium

$t_{ m form} = \gamma \,\, au_{ m form} \lesssim L$

• Low \sqrt{s} and/or negative $x_{\rm F}$, indicated on plots for $au_{
m form}=0.3~{
m fm}~(\uparrow)$

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Extrapolating to other energies

Two competing mechanisms might alter heavy-quarkonium suppression

• Nuclear absorption if hadron formation occurs inside the medium

 $t_{
m form} = \gamma \,\, au_{
m form} \lesssim L$

- Low \sqrt{s} and/or negative $x_{\rm F}$, indicated on plots for $au_{
 m form}=0.3~{
 m fm}~(\uparrow)$
- nPDF/saturation effects when $Q_s^2 \sim m_c^2$
 - Use nPDF's or parameterized suppression from CGC calculation [Fujii Gelis Venugopalan 2006]

$$R_{_{\mathbf{P}\mathbf{A}}} = R_{_{\mathbf{P}\mathbf{A}}}^{\mathsf{E}.\mathsf{loss}}(\hat{q}) \times \frac{G_{_{\mathbf{A}}}^{_{\mathbf{A}}\mathbf{P}\mathcal{F}}(x_{2},M_{\perp})}{G_{_{\mathbf{P}}}(x_{2},M_{\perp})} \quad \mathsf{or} \quad R_{_{\mathbf{P}\mathbf{A}}} = R_{_{\mathbf{P}\mathbf{A}}}^{\mathsf{E}.\mathsf{loss}}(\hat{q}) \times \frac{S_{_{\mathbf{A}}}^{_{\mathrm{S}}\mathrm{at}}(\mathcal{Q}_{*})}{S_{_{\mathbf{S}}}^{_{\mathrm{s}}\mathrm{at}}(\mathcal{Q}_{*})}$$

- No additional parameter: $Q_s^2(x,L) = \hat{q}(x)L$ [Mueller 1999]
- $Q_s^2(x = 10^{-2}) = 0.11 0.14 \text{ GeV}^2$ consistent with fits to DIS data FAIbadete et al AAMOS 2012 PC

 Motivations
 The setup

 Scaling properties of parton energy loss
 Induced radiation spectrum

 Coherent induced radiation
 Phenomenology. Model for J/ψ suppression

Procedure

• Fit \hat{q}_0 from J/ψ E866 data in p W collisions: $\hat{q}_0 = 0.075 \text{ GeV}^2/\text{fm}$

2 Predict J/ψ and Υ suppression for all nuclei and c.m. energies

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

Quenching weight, $P(\epsilon | \Delta q_{\perp}^2)$

- Radiation with $t_f(\omega_i)\sim \omega_i/\Delta q_\perp^2\gg L$
- Self-consistency constraint $\omega_1 \ll \omega_2 \ll \ldots \ll \omega_n$

$$P(\epsilon) \simeq rac{dI(\epsilon)}{d\omega} \exp\left\{-\int_{\epsilon}^{\infty} d\omega rac{dI}{d\omega}
ight\}$$

Broadening. $\Delta q_{\perp}^2 = \hat{q}L$

• \hat{q} related to gluon distribution in a target nucleon [BDMPS 1997]

$$\hat{q}(x) = \frac{4\pi^2 \alpha_s C_R}{N_c^2 - 1} \, \rho \, x G(x, \hat{q}L) \simeq \hat{q}_0 \left(10^{-2} / x \right)^{0.3}$$

• Typical value for x depends on $t_{\rm hard} \sim \frac{1}{M} \frac{E}{M} \sim 1/(m_p x_2)$:

•
$$t_{\text{hard}} \lesssim L \Rightarrow x = x_0 \simeq (m_N L)^{-1}; \Rightarrow \hat{q}(x) \text{ constant}$$

•
$$t_{hard} > L \Rightarrow x \simeq x_2; \Rightarrow \hat{q}(x) \propto x_2 G(x_2)$$

$\hat{q}_{_0}$ only free parameter of the model

 Motivations
 The setup

 Scaling properties of parton energy loss
 Induced radiation spectrum

 Coherent induced radiation
 Phenomenology. Model for J/ψ suppression

p_{\perp} dependence

Most general case. The p_t broadening: $|\Delta \vec{p}_{\perp}| = \hat{q} L_{\text{eff}}$

$$\frac{1}{A} \frac{d\sigma_{\rm pA}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} = \int_{\varepsilon} \int_{\varphi} \mathcal{P}(\varepsilon, E) \frac{d\sigma_{\rm pp}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} \left(E + \varepsilon, \vec{p}_{\perp} - \Delta \vec{p}_{\perp} \right)$$

• Parametrization consistent with
$$pp$$
 experimental data

$$\frac{d\sigma_{\rm pp}^{\psi}}{dy \, d^2 \vec{p}_{\perp}} \propto \left(\frac{p_0^2}{p_0^2 + p_{\perp}^2}\right)^m \times \left(1 - \frac{2M_{\perp}}{\sqrt{s}} \cosh y\right)^n \equiv \mathcal{N} \times \mu(p_{\perp}) \times \nu(y, p_{\perp})$$

• For $\mathcal{P}(\varepsilon, E)$ peaked at small ε $R_{pA}^{\psi}(y, p_{\perp}) \simeq R_{pA}^{loss}(y, p_{\perp}) \cdot R_{pA}^{broad}(p_{\perp})$

イロト イポト イヨト イヨト

 Motivations
 The setup

 Scaling properties of parton energy loss
 Induced radiation spectrum

 Coherent induced radiation
 Phenomenology. Model for J/ψ suppression

p_{\perp} dependence

Most general case. The p_t broadening: $|\Delta \vec{p}_{\perp}| = \hat{q} L_{\text{eff}}$

$$\frac{1}{A} \frac{d\sigma_{\rm pA}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} = \int_{\varepsilon} \int_{\varphi} \mathcal{P}(\varepsilon, E) \frac{d\sigma_{\rm pp}^{\psi}}{dE \ d^2 \vec{p}_{\perp}} \left(E + \varepsilon, \vec{p}_{\perp} - \Delta \vec{p}_{\perp} \right)$$

$$R^{\psi}_{\mathrm{pA}}(y, p_{\perp}) \simeq R^{\mathrm{loss}}_{\mathrm{pA}}(y, p_{\perp}) \cdot R^{\mathrm{broad}}_{\mathrm{pA}}(y, p_{\perp})$$

- Overall depletion due to parton energy loss
- Possible Cronin peak due to momentum broadening

$$\begin{aligned} R_{\rm pA}^{\rm broad}(\boldsymbol{y},\boldsymbol{p}_{\perp}) \equiv \int_{\varphi} \frac{\mu(|\vec{p}_{\perp} - \Delta \vec{p}_{\perp}|)}{\mu(\boldsymbol{p}_{\perp})} \frac{\nu(\boldsymbol{E}, \vec{p}_{\perp} - \Delta \vec{p}_{\perp})}{\nu(\boldsymbol{E}, \boldsymbol{p}_{\perp})};\\ R_{\rm pA}^{\rm loss}(\boldsymbol{y},\boldsymbol{p}_{\perp}) \equiv \int_{\varepsilon} \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \equiv \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{p}_{\perp})} \right] = \mathcal{P}(\varepsilon, \boldsymbol{E}) \left[\frac{\boldsymbol{E}}{\boldsymbol{E} + \varepsilon} \right] \left[\frac{\nu(\boldsymbol{E} + \varepsilon, \boldsymbol{p}_{\perp})}{\nu(\boldsymbol{E}; \boldsymbol{E} + \varepsilon} \right] \right]$$

The setup induced radiation spectrum Phenomenology. Model for J/ψ suppression

Centrality

Centrality dependence is given by $L_{\rm eff}$

Experimental situation

[PHENIX 08, ALICE 12]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- Centrality selection via multiplicity in target fragmentation region $N_A^{\rm ch}$
- N_A^{ch} is strongly correlated with N_A^{part}
- The model

•
$$L_{\text{eff}} = L_{pp} + \frac{\langle N_{\mathcal{A}}^{\text{part}} \rangle_{\psi} - 1}{\sigma_{\text{inel}} \rho_0}$$

• Glauber model estimates of $\langle N_A^{\text{part}} \rangle_{\psi}$ with constraints on N_A^{part}

Arleo, RK, Peigné, Rustamova 1304.0901

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

RHIC: p_t and centrality dependence

• Good description of p_{\perp} and centrality dependence at y = -1.7

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

RHIC: p_t and centrality dependence

• Good description of p_{\perp} and centrality dependence at y = 0

The setup Induced radiation spectrum Phenomenology. Model for J/ψ suppression

RHIC: p_t and centrality dependence

• Good description of p_{\perp} and centrality dependence at y = 1.7