

Institut für Theoretische Physik

arXiv:1404.2765

Directed flow from the PHSD transport approach

Volodya Konchakovski Wolfgang Cassing Yury Ivanov Vyacheslav Toneev

NeD & TURIC 2014 Hersonissos, Crete, Greece 11 June 2014

Anisotropy coefficients

Non central Au+Au collisions :

interaction between constituents leads to a pressure gradient => spatial asymmetry is converted to an asymmetry in momentum space => collective flow

$$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right)$$
$$v_n = \left\langle\cos n(\varphi - \psi_n)\right\rangle, \quad n = 1, 2, 3...$$

v₁: directed flow
v₂: elliptic flow
v₃: triangular flow.....

$$v_1 = \left\langle \frac{p_x}{p_T} \right\rangle, \quad v_2 = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle$$

Direct flow and Quark–Gluon Plasma

Heavy Ion Phys. 1, 309 (1995)

Antiflow of nucleons at the softest point of the EoS

EoS is softened either by a phase transition to QGP, or by the creation of resonances and string-like excitations

J. Brachmann, S. Soff, A. Dumitru, Y. Stoecker, J.A. Maruhn, W. Greiner, L.V. Bravina, D.H. Rischke, Phys. Rev. C61 (2000) 024909

Collective flow signals of the Quark–Gluon Plasma

H. Stöcker, Nucl. Phys. A 750, 121 (2005)

- Early hydro calculation predicted the "softest point" at E_{lab} = 8 AGeV
- A linear extrapolation of the data (arrow) suggests a collapse of flow at E_{lab} = 30 AGeV

5

Recent measurements of v₁ of identified hadrons

 measured distributions are smooth Statistical errors are shown and systematic bars are shaded

STAR collaboration, arXiv:1401.3043

9447847899 08 • 19451919459

I. From hadrons to QGP:

- Initial A+A collisions:
 - string formation in primary NN collisions
 - strings decay to **pre-hadrons** (*B* baryons, *m* mesons)
- **Formation of QGP stage by dissolution of pre-hadrons** into massive colored quarks + mean-field energy based on the Dynamical Quasi-Particle Model (DQPM) which defines quark spectral functions, masses $M_q(\varepsilon)$ and widths $\Gamma_q(\varepsilon)$
 - + mean-field potential U_q at given ε local energy density (related by lQCD EoS to T - temperature in the local cell)

II. Partonic phase - QGP:

- quarks and gluons (= ,dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by the DQPM
- in self-generated mean-field potential for quarks and gluons U_q , U_g from the DQPM
- EoS of partonic phase: ,crossover' from lattice QCD (fitted by DQPM)
- (quasi-) elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM
- III. <u>Hadronization</u>: based on DQPM
- massive, off-shell (anti-)quarks with broad spectral functions hadronize to off-shell mesons and baryons or color neutral excited states -,strings' (strings act as ,doorway states' for hadrons)
- IV. <u>Hadronic phase:</u> hadron-string interactions off-shell HSD

DQPM: Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365: NPA 793 (2007) W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; **7** NPA831 (2009) 215; EPJ ST 168 (2009) 3; NPA856 (2011) 162.

 $\begin{array}{c} \mathbf{\mathcal{E}} \\ \mathbf{\mathcal{E}}$

QGP phase:

 $\epsilon > \epsilon_{\rm critical}$

PHSD for HIC from AGS to RHIC (highlights)

PHSD provides a consistent description of HIC dynamics

PHSD

PHSD: snapshot of the reaction plane

PHSN

t = 3 fm/c

t = 6 fm/c

- Color scale: baryon number density
- Black levels: parton density 0.6 and 0.01 fm⁻³
- Red arrows: local velocity of baryon matter

PHSD: <**p**_x> at **y** = +0.25

- Averaged over ~ 80 000 collisions
- Directed flow v₁ is formed at an early stage of the nuclear interaction.
- Baryons are reaching positive and mesons negative value of v,

PIST

Directed flow from PHSD and HSD

- Both models HSD and PHSD reproduce general trends of resent STAR results
- Protons and pions are reasonably described by both models
- Antiprotons in PHSD are produced dominantly from hadronization at highest energies
- PHSD and HSD coincide at lower energies => dominance of hadronic matter and hadronic reaction channels (absorption and recreation)

PHSD: Characteristic slope of v₁(y)

• The slope of $v_1(y)$ at midrapidity:

$$F = \frac{dv_1}{dy} \bigg|_{y}$$

is used to characterize directed flow

=0

- Fit v₁(y) = Fy was used in the rapidity window -0.5 < y < 0.5
- Proton slopes are in qualitative agreement but overestimate STAR data at 5 < √s < 15 GeV; HSD is close to UrQMD
- UrQMD fail to reproduce pion and antiproton slopes
- PHSD/HSD work better due to including of inverse processes for antiproton annihilation

STAR Collaboration, arXiv:1401.3043 UrQMD J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher and H. Stöcker, [1402.7236]

3FD: directed flow vs. EoS

 Description of the STAR v₁(y) is not very well and relatively worse then by the PHSD

fireball-fluid

• Crossover EoS agrees better with the experiment then the pure hadronic EoS

3FD: excitation function of v₁ slopes

- 3-Fluid Dynamic approach (3FD) gives reasonable results for proton and pion slopes of v₁ and fail at 7.7 GeV for antiprotons
- Discrepancies between 3FD model and STAR data are smaller in case of crossover

3FD: excitation function of v₁ slopes

- 3-Fluid Dynamic approach (3FD) gives reasonable results for proton and pion slopes of v₁ and fail at 7.7 GeV for antiprotons
- Discrepancies between 3FD model and STAR data are smaller in case of crossover
- Resent hydrodynamical and hybrid (hydro+kinetic) results are shown in comparison
- Give worse description of data for both chiral x-over and Bag Model (BM) EoS

J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher and H. Stöcker, [1402.7236]

Summary

- ➤ The microscopic Parton-Hadron-String-Dynamics (PHSD) transport approach reproduces the general trend in the v₁(y) excitation function in the energy range \sqrt{s} =7.7-39 GeV and leads to an almost quantitative agreement for protons, antiprotons and pions especially at higher energies. We don't see any "wiggle-like" irregularities as expected by early hydro calculations.
- The PHSD results differ from those of HSD where no partonic degrees of freedom are incorporated. A comparison of both microscopic models has provided detailed information on the effect of parton dynamics on the directed flow.
- Inclusion of antiproton annihilation into several mesons as well as inverse processes in HSD/PHSD help to reproduce antiproton directed flow (in contrast to UrQMD).
- 3-Fluid Dynamic approach (3FD) gives reasonable results for proton and pion slopes of v₁ and fail at 7.7 GeV for antiprotons, which is better then the resent hydrodynamical and hybrid (hydro+kinetic) results.
- Crossover agrees better with the experiment then the pure hadronic EoS¹⁷

FIAS & Frankfurt University

Elena Bratkovskaya Rudy Marty Hamza Berrehrah Daniel Cabrera Taesoo Song Andrej Ilner Giessen University Wolfgang Cassing Olena Linnyk Volodya Konchakovski Thorsten Steinert Alessia Palmese

External Collaborations

SUBATECH, Nantes University: Jörg Aichelin **Christoph Hartnack Pol-Bernard Gossiaux** Vitalii Ozvenchuk **Texas A&M University: Che-Ming Ko** JINR. Dubna: Viacheslay Toneev Vadim Voronyuk **BITP, Kiev University: Mark Gorenstein Barcelona University:** Laura Tolos **Angel Ramos University Rio de Janeiro** Takeshi Kodama

