Higher order fluctuations of strangeness and flavour hierarchy

Valentina Mantovani Sarti1, in collaboration with
P.Alba1, W.Alberico1, R.Bellwied2, M.Bluhm3, M.Nahrgang4,5, C.Ratti1

1 University of Torino and INFN Torino, 2 University of Houston, 3 North Carolina State University, 4 Duke University, 5 FIAS

III International Symposium on Non-equilibrium Dynamics & IV TURIC Network Workshop
Crete 9-14 June 2014
Strangeness in Heavy Ion Collisions (HIC)
- What information could we learn on Quark Gluon Plasma formation (QGP) and on properties of matter at hadronization

Chemical freeze-out and strangeness within a Hadron Resonance Gas model
- reproduce strange particle ratios at STAR → a higher T_{ch} is needed to reproduce the data?
- extract freeze-out parameters from the analysis of cumulants → preliminary results of kaons at STAR
- link between LQCD and HRG
 - study of ratios of higher order cumulants for strange particles as experimental observables in HIC
 - flavour hierarchy in the chemical freeze-out process

Conclusions
Strangeness in HICs

- signal of QGP formation:
 \[g + g \leftrightarrow s + \bar{s}, \quad q + \bar{q} \leftrightarrow s + \bar{s} \]
- \[Q \approx 2m_s \approx 200 \text{ MeV} \text{ near } T_c \]

STRANGENESS IS EASY TO PRODUCE
ONCE A QGP STATE HAS BEEN FORMED

Strangeness in HICs

- Experimental observation of an enhancement in $A - A$ collisions with respect to pp both at RHIC and LHC
- Enhancement reduces with increasing collision energy

Strangeness in HICs

- experimental observation of an enhancement in $A - A$ collisions with respect to pp both at RHIC and LHC

J.F. Grosse-Oetringhaus, Alice overview QM2014
Strangeness in HICs

- Fits to yields and ratios of strange particles indicate a higher temperature with respect to particles containing only light quarks.
Strangeness in HICs

- indications of flavour hierarchy in the deconfinement transition from LQCD

FLAVOUR HIERARCHY AT CHEMICAL FREEZE-OUT?
HIC evolution: chemical freeze-out

- inelastic scattering among particles ceases \rightarrow particle yields and ratios are fixed $\rightarrow T_{ch}$ and $\mu_{B, ch}$

- description of hadronic matter at freeze-out obtained through a HRG model:
 - partial chemical equilibrium \rightarrow feed-down from resonances up to 2 GeV
 - inclusion of acceptance and kinematics cuts for particle distribution
HIC evolution: chemical freeze-out

- inelastic scattering among particles cease → particle yields and ratios are fixed → T_{ch} and $\mu_{B,ch}$
- description of hadronic matter at freeze-out obtained through an HRG model:
 - partial chemical equilibrium → feed-down from resonances up to 2 GeV
 - inclusion of acceptance and kinematics cuts of particle distribution
- chemical freeze-out for strange particles (kaons and hyperons) might occur earlier with respect to pions and nucleons

HOW COULD WE EXTRACT THE FREEZE-OUT PARAMETERS FOR STRANGE PARTICLES?
Fluctuations of conserved charges

In a grand canonical ensemble approach the fluctuations for a specific conserved charge are defined as:

\[
\chi_{BSQ}^{lmn} = \frac{\partial^{l+m+n} p / T^4}{\partial (\mu_B / T)^l \partial (\mu_S / T)^m \partial (\mu_Q / T)^n}.
\]

They are related to the moments of multiplicity distributions available experimentally:

\[
M = VT^3 \chi_1, \quad \sigma^2 = VT^3 \chi_2
\]

\[
S = \frac{VT^3 \chi_3}{(VT^3 \chi_2)^{3/2}}, \quad \kappa = \frac{VT^3 \chi_4}{(VT^3 \chi_2)^2}
\]

and to volume-independent ratios:

\[
S\sigma = \frac{\chi_3}{\chi_2}, \quad \kappa \sigma^2 = \frac{\chi_4}{\chi_2}
\]

\[
\frac{M}{\sigma^2} = \frac{\chi_1}{\chi_2}, \quad \frac{S\sigma^3}{M} = \frac{\chi_3}{\chi_1}
\]
The chemical potentials are not independent:

\[\rho_S = 0, \quad \rho_Q = \frac{Z}{A} \rho_B \quad \frac{Z}{A} = 0.4 \]

The comparison to experimental data of the ratios of moments for a specific charge, evaluated in the HRG model including:

- acceptance and kinematics cuts;
- feed-down from resonances

allows to extract temperature \(T_{ch} \) and baryochemical potential \(\mu_B \) at freeze-out as function of the center of mass energy \(\sqrt{s_{NN}} \).
Freeze-out parametrization from net-proton and net-charge fluctuations at RHIC

- Fit of χ_2/χ_1 for the net-electric charge and net-proton data at STAR
 (for more details see P.Alba’s talk and arXiv:1403.4903)
How well do we reproduce strange particle ratios with this parametrization?

Hyperon to pion ratios need a higher T_{ch} in order to reproduce data.
Focus on kaon and proton ratios: are they good thermometers?

- The kaon to pion ratios show a less sensitive result to $T_{ch} \rightarrow$ we reproduce data within error bars both for $T_{ch} = 148$ and $T_{ch} = 166$ MeV
- The proton to pion ratio seems to have more sensitivity to T_{ch}
Freeze-out parametrization from net-proton and net-charge fluctuations at RHIC

Sensitivity to temperature: fluctuations and ratios

\[\frac{K^+}{\pi^+} \quad \frac{K^-}{\pi^-} \quad \chi_2/\chi_1 \text{ for net kaons} \]

\[\frac{p}{\pi^+} \quad \frac{\bar{p}}{\pi^-} \quad \chi_2/\chi_1 \text{ for net protons} \]

V. Mantovani Sarti et al. (to be published)

lower moments for kaons ⇔ proton to pion ratio
Freeze-out parametrization from lower moments of net-kaons

- The same analysis performed on protons and pions has been used with *NOT EFFICIENCY CORRECTED* data on net-kaons from the STAR collaboration.
- At the moment, the analysis has been done only on kaons; more data on hyperons are needed in order to obtain stronger constraints on the strange sector.

D. McDonald, Quark Matter 2012 — A. Sarkar, Quark Matter 2014
Freeze-out parametrization from lower moments of net-kaons

- Fit of χ_2/χ_1 for net-kaons $\rightarrow \mu_B$ fixed from net-proton (connected to $\sqrt{s_{NN}}$) $\rightarrow T_{ch}$
- Decoupling of T_{ch} at higher energies $\rightarrow T_{ch}(200 \text{ GeV}) \approx 164 \text{ MeV}$
Presently only uncorrected data for moments of the strangeness multiplicity have been published and it is not possible to evaluate χ_2/χ_1 on the lattice.

In order to connect to LQCD, we need to go to higher moments of strangeness, such as χ_4/χ_2.

Agreement with full HRG at low T, potential sensitivity to flavour hierarchy → THERMOMETER

Chemical freeze-out from first principles: higher moments of strangeness and LQCD

- χ_2/χ_1 in HRG is very sensitive to T_{ch} for kaons alone
- Addition of strange baryons changes the magnitude but not sensitivity

χ_2/χ_1 cannot be related to LQCD but EVEN ratios can
\(\chi_4/\chi_2 \) requires a significant contribution from multi-strange baryons in order to be sensitive to \(T \rightarrow \) the curve gets steeper as the content of strangeness increases

inclusion of hyperons \(\rightarrow \) major challenge for experiment!
Conclusions

- the study of strangeness production could provide information and insights on properties of QGP and of hadronic matter at freeze-out.

- fluctuations of conserved charges at HICs prove to be a useful tool to determine T and μ_B at freeze-out → freeze-out parametrization from net-proton and net-charge fluctuations with $T_{ch} = 146.8 \pm 1.2$ MeV and $\mu_B = 24.3 \pm 0.6$ MeV at 200 GeV.

- the analysis of particle ratios at STAR for these FO conditions shows hints of a higher temperature for strange particles with respect to protons and pions.

- preliminary results on lower moments of uncorrected data for kaons at STAR shows a stronger sensitivity to the temperature and indicate a $T_{ch} \approx 164$ at 200 GeV → flavour hierarchy at chemical freeze-out?

- in order to connect to LQCD calculations, a study on higher moments, such as χ_4/χ_2, for combinations of strange particles is in progress, experimental data are needed as soon as possible.