Beth-Uhlenbeck approach to a hadron resonance gas with Mott effect: thermodynamics and chemical freezeout¹

David Blaschke

Institute of Theoretical Physics, University Wrocław, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia

> NeD-2014 / TURIC-2014 Hersonissos, Crete, Greece, June 12, 2014

¹Collab.: J. Berdermann, M. Buballa, J. Cleymans, A. Dubinin, A. Radzhabov, K. Redlich, G. Röpke, L. Turko, A. Wergieluk, D. Zablocki ...

Rolf Hagedorn - Statistical model of particle production

QCD Phase Diagram & Heavy-Ion Collisions

in the QCD phase diagram

Energy density vs. baryon density at freeze-out for different $\sqrt{s_{NN}}$ (GeV)

Highest baryon densities at freeze-out shall be reached for $\sqrt{s_{NN}} \sim 8 \text{ GeV} \longrightarrow \text{QGP}$ phase transition ?

Part I - Mott dissociation of pion in PNJL

Pion dissociation and Levinson's theorem (A PNJL model case study)

- Gap eqn. & Bethe-Salpeter eqn. in PNJL quark matter
- Mott-Anderson dissociation/delocalization of pions
- Generalized Beth-Uhlenbeck EoS for quark-meson matter
- Levinson theorem & quark-meson thermodynamics

A. Wergieluk, D. Blaschke, Yu. Kalinovsky, A. Friesen, arxiv:1212.5245;
Dubna Report E2-2013-19; Phys. Part. Nucl. Lett. 7 (2013) 660.
D.B., M. Buballa, A. Dubinin, G. Röpke, D. Zablocki, arxiv:1305.3907.v3; Annals Phys. in press (2014)
A. Dubinin, D. Blaschke, Yu. Kalinovsky; arxiv:1312.0559

The state of the art in January 1994

1) The NJL model:

(P. Zhuang, J. Hüfner and S. P. Klevansky, Nucl. Phys. A **576** (1994) 525)

Hüfner, Klevansky, Witzler, D.B., Dossenheim (2007)

The state of the art in January 2008

2) The PNJL model:

S. Roessner, T. Hell, C. Ratti and W. Weise, Nucl. Phys. A **814** (2008) 118; [arXiv:0712.3152]

The state of the art in January 2011

3) The nonlocal PNJL model:

(A. E. Radzhabov, D. Blaschke, M. Buballa and M. K. Volkov, Phys. Rev. D **83** (2011) 116004 [arXiv:1012.0664 [hep-ph]])

Everything begins with a Lagrangian:

$$\mathcal{L}_{PNJL} = \bar{q} \left(i \gamma^{\mu} D_{\mu} - m_0 - \gamma^0 \mu \right) q + \sum_{M = \sigma', \vec{\pi}'} G_M \left(\bar{q} \Gamma_M q \right)^2 - U(\Phi[A]; T),$$

where $D_{\mu} = \partial_{\mu} - iA_{\mu}$,

$$U(\Phi;T) = T^4 \left[-\frac{b_2(T)}{2} \Phi^2 - \frac{b_3}{3} \Phi^3 + \frac{b_4}{4} \Phi^4 \right],$$

$$b_2(T) = a_0 + a_1 \left(\frac{T_0}{T}\right) + a_2 \left(\frac{T_0}{T}\right)^2 + a_3 \left(\frac{T_0}{T}\right)^3,$$

a_0	a_1	a_2	b_3	b_4	T_0 [MeV]
6.75	-1.95	-7.44	0.75	7.5	208

- C. Ratti, M. A. Thaler and W. Weise, Phys. Rev. D 73 (2006) 014019,
- B.-J. Schaefer, J. M. Pawlowski and J. Wambach, Phys. Rev. D 76 (2007) 074023.

< (P) >

-∢ ≣ ▶

The partition function in the PNJL model:

$$\begin{aligned} \mathcal{Z}_{PNJL}[T,V,\mu] &= \int \mathcal{D}\bar{q}\mathcal{D}q \exp\left\{\int_{0}^{\beta} d\tau \int_{V} d^{3}x \left[\bar{q}\left(i\gamma^{\mu}(\partial_{\mu}-iA_{\mu})-m_{0}-\gamma^{0}\mu\right)q + G_{S}\left(\bar{q}\Gamma_{\sigma'}q\right)^{2} + G_{S}\left(\bar{q}\bar{\Gamma}_{\pi'}q\right)^{2} - U(\Phi[A];T)\right]\right\} \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

The partition function in the PNJL model:

$$\mathcal{Z}_{PNJL}[T, V, \mu] = \int \mathcal{D}\bar{q}\mathcal{D}q \exp\left\{\int_{0}^{\beta} d\tau \int_{V} d^{3}x \left[\bar{q}\left(i\gamma^{\mu}(\partial_{\mu} - iA_{\mu}) - m_{0} - \gamma^{0}\mu\right)q + G_{S}\left(\bar{q}\Gamma_{\sigma'}q\right)^{2} + G_{S}\left(\bar{q}\Gamma_{\pi'}q\right)^{2} - U(\Phi[A];T)\right]\right\}$$

$$\begin{aligned} \mathcal{Z}_{PNJL}[T, V, \mu] &= \int \mathcal{D}\sigma' \mathcal{D}\vec{\pi}' \exp\left\{-\left[\int_0^\beta d\tau \int_V d^3x \left(\frac{\sigma'^2 + \vec{\pi}'^2}{4G_S} + U(\Phi[A]; T)\right)\right] + \\ &+ \operatorname{Tr}\ln\left[\beta S^{-1}[\sigma', \vec{\pi}']\right]\right\} \end{aligned}$$

・ロト ・部 ト ・ヨト ・ヨト

The partition function in the PNJL model:

$$\mathcal{Z}_{PNJL}[T, V, \mu] = \int \mathcal{D}\bar{q}\mathcal{D}q \exp\left\{\int_{0}^{\beta} d\tau \int_{V} d^{3}x \left[\bar{q}\left(i\gamma^{\mu}(\partial_{\mu} - iA_{\mu}) - m_{0} - \gamma^{0}\mu\right)q + G_{S}\left(\bar{q}\Gamma_{\sigma'}q\right)^{2} + G_{S}\left(\bar{q}\Gamma_{\pi'}q\right)^{2} - U(\Phi[A];T)\right]\right\}$$

$$\begin{aligned} \mathcal{Z}_{PNJL}[T, V, \mu] &= \int \mathcal{D}\sigma' \mathcal{D}\vec{\pi}' \exp\left\{-\left[\int_0^\beta d\tau \int_V d^3x \left(\frac{\sigma'^2 + \vec{\pi}'^2}{4G_S} + U(\Phi[A]; T)\right)\right] + \\ &+ \operatorname{Tr}\ln\left[\beta S^{-1}[\sigma', \vec{\pi}']\right]\right\} \end{aligned}$$

$$\Omega_{FL}^{(2)}[T, V, \mu] = \frac{T}{V} \ln \left[\det \left(\frac{1}{2G_S} - \Pi_{\sigma} \left(q_0, \vec{q} \right) \right) \right]^{-\frac{1}{2}} + \frac{T}{V} \ln \left[\det \left(\frac{1}{2G_S} - \Pi_{\vec{\pi}} \left(q_0, \vec{q} \right) \right) \right]^{-\frac{3}{2}}$$

・ロト ・回ト ・ヨト ・ヨト

3

Thermodynamic potential - propagators - phase shifts

Thermodynamic potential for bosonic degree of freedom (mode) X

$$\begin{split} \Omega_{\rm X}(T,\mu) &= \frac{1}{2} \frac{T}{V} \, {\rm Tr} \ln S_{\rm X}^{-1}(iz_n,{\bf q}) = \frac{1}{2} d_{\rm X} T \sum_n \int \frac{{\rm d}^3 q}{(2\pi)^3} \ln S_{\rm X}^{-1}(iz_n,{\bf q}) \;, \\ &= -d_{\rm X} T \sum_n \int \frac{{\rm d}^3 q}{(2\pi)^3} \int_{-\infty}^\infty \frac{{\rm d}\omega}{2\pi} \; \frac{1}{iz_n - \omega} {\rm Im} \ln S_{\rm X}^{-1}(\omega + i\eta,{\bf q}) \;, \end{split}$$

 $\mathsf{Propagator} = \mathsf{complex} \; \mathsf{function} \to \mathsf{polar} \; \mathsf{representation}$

$$S_{\rm X}^{-1}(iz_n, \mathbf{q}) = G_{\rm X}^{-1} - \Pi_{\rm X}(iz_n, \mathbf{q}) = |S_{\rm X}| e^{i\Phi_{\rm X}} , \ \Phi_{\rm X}(\omega, \mathbf{q}) = -\mathrm{Im}\ln S_{\rm X}^{-1}(\omega - \mu_X + i\eta, \mathbf{q})$$

Beth-Uhlenbeck formula

$$\begin{split} \Omega_{\rm X}(T,\mu) &= d_{\rm X} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} n_{\rm X}^-(\omega) \Phi_{\rm X}(\omega,\mathbf{q}) \\ &= -d_{\rm X} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \int_0^{\infty} \frac{\mathrm{d}\omega}{2\pi} \left[1 + n_{\rm X}^-(\omega) + n_{\rm X}^+(\omega)\right] \Phi_{\rm X}(\omega,\mathbf{q}) \\ &= d_{\rm X} \int \frac{\mathrm{d}^3 q}{(2\pi)^3} \int_0^{\infty} \frac{\mathrm{d}\omega}{2\pi} \left\{\omega + T \ln\left(1 - \mathrm{e}^{-(\omega-\mu_{\rm X})/T}\right) \right. \\ &+ T \ln\left(1 - \mathrm{e}^{-(\omega+\mu_{\rm X})/T}\right) \left. \right\} \frac{\mathrm{d}\Phi_{\rm X}(\omega,\mathbf{q})}{\mathrm{d}\omega} \,. \end{split}$$

-

The Generalized Beth-Uhlenbeck approach

$$P_M^{(2)} = -\Omega_M^{(2)}(T,\mu) = \frac{N_M}{2} \int \frac{d^3q}{(2\pi)^3} \left(\int_0^{+\infty} \frac{d\omega}{\pi} \left[\omega + 2T \ln\left(1 - e^{-\beta\omega}\right) \right] \frac{d\Phi_M(\omega,\vec{q})}{d\omega} \right)$$

Mott-effect: bound state (delta function) \rightarrow resonance (spectral broadening)

$$\frac{d\Phi_M(\omega, \vec{q})}{d\omega} \longrightarrow \begin{cases} \pi \ \delta(\omega - E_M), & T < T_{\rm Mott} \\ \frac{d\phi_R(\omega, \vec{q})}{d\omega}, & T > T_{\rm Mott} \end{cases}$$

直 ト イヨ ト イヨ ト

3

The Generalized Beth-Uhlenbeck approach

$$P_M^{(2)} = -\Omega_M^{(2)}(T,\mu) = \frac{N_M}{2} \int \frac{d^3q}{(2\pi)^3} \left(\int_0^{+\infty} \frac{d\omega}{\pi} \left[\omega + 2T \ln\left(1 - e^{-\beta\omega}\right) \right] \frac{d\Phi_M(\omega,\vec{q})}{d\omega} \right)$$

Mott-effect: bound state (delta function) \rightarrow resonance (spectral broadening)

$$\frac{d\Phi_M(\omega, \vec{q})}{d\omega} \longrightarrow \begin{cases} \pi \ \delta(\omega - E_M), & T < T_{\rm Mott} \\ \\ \frac{d\phi_R(\omega, \vec{q})}{d\omega}, & T > T_{\rm Mott} \end{cases}$$

The Breit-Wigner ansatz for the phase shift derivative:

$$\frac{d\phi_R(s,T)}{ds} = A_R(s,T) = \frac{\pi}{\frac{\pi}{2} + \arctan\left(\frac{\bar{q}^2 + M_M^2}{M_M \Gamma_M}\right)} \frac{M_M \Gamma_M}{\left(s - M_M^2\right)^2 + (M_M \Gamma_M)^2}$$

/□ ▶ < 글 ▶ < 글

The Generalized Beth-Uhlenbeck approach

$$P_M^{(2)} = -\Omega_M^{(2)}(T,\mu) = \frac{N_M}{2} \int \frac{d^3q}{(2\pi)^3} \left(\int_0^{+\infty} \frac{d\omega}{\pi} \left[\omega + 2T \ln\left(1 - e^{-\beta\omega}\right) \right] \frac{d\Phi_M(\omega,\vec{q})}{d\omega} \right)$$

Mott-effect: bound state (delta function) \rightarrow resonance (spectral broadening)

$$\frac{d\Phi_M(\omega, \vec{q})}{d\omega} \longrightarrow \begin{cases} \pi \ \delta(\omega - E_M), & T < T_{\rm Mott} \\ \\ \frac{d\phi_R(\omega, \vec{q})}{d\omega}, & T > T_{\rm Mott} \end{cases}$$

The Breit-Wigner ansatz for the phase shift derivative:

$$\frac{d\phi_R(s,T)}{ds} = A_R(s,T) = \frac{\pi}{\frac{\pi}{2} + \arctan\left(\frac{\bar{q}^2 + M_M^2}{M_M \Gamma_M}\right)} \frac{M_M \Gamma_M}{\left(s - M_M^2\right)^2 + (M_M \Gamma_M)^2}$$

and the corresponding meson pressure ($\omega=\sqrt{\vec{q}^2+s})$

$$P_M(T) = \frac{N_M}{2} \int \frac{d^3q}{(2\pi)^3} \int_{4m^2}^{+\infty} ds \left(\omega + 2T \ln\left(1 - e^{-\beta\omega}\right)\right) D_M(s,T)$$

- 4 同 1 4 日 1 4 日 1

Meson masses with spectral broadening

Separating the real and imaginary part of $\Pi_M (q_0, \vec{0}) = 4N_c N_f I_1 - 2N_c N_f P_M I_2$ results in coupled Bethe-Salpeter equations:

$$M_M^2 - \frac{1}{4}\Gamma_M^2 - \begin{pmatrix} 4m^2 \\ 0 \end{pmatrix} = \frac{\frac{1}{4N_cN_fG_S} - 2I_1}{|I_2(q_0 = M_M - i\frac{1}{2}\Gamma_M)|^2} \cdot \operatorname{Re} I_2(q_0).$$

$$M_M \Gamma_M = \frac{\frac{1}{4N_c N_f G_S} - 2I_1}{|I_2(q_0 = M_M - i\frac{1}{2}\Gamma_M)|^2} \cdot \text{Im } I_2(q_0).$$

See, e.g., D. Blaschke, M. Jaminon, Yu.L. Kalinovsky, et al., NPA 592 (1995) 561

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

Levinson's theorem

Breit-Wigner ansatz $\rightarrow \phi_R$ is

$$\phi_R(s) = \frac{\pi}{\frac{\pi}{\frac{\pi}{2} - \arctan\left(\frac{4m^2 - M_M^2}{M_M \Gamma_M}\right)}} \left(\arctan\left[\frac{s - M_M^2}{M_M \Gamma_M}\right] - \arctan\left[\frac{4m^2 - M_M^2}{M_M \Gamma_M}\right]\right)$$

[it fulfills $\phi_R(s \to 4m^2) = 0$ and $\phi_R(s \to \infty) = \pi]$

violates Levinson's theorem which would require

$$\phi(s_{\text{threshold}} = 4m^2) - \phi(\infty) = n\pi = 0$$
,

since the number of bound states below threshold vanishes (n=0) for $T > T_{Mott}$

 \rightarrow Solution: phase shift corresponding to scattering states missing!

Two contributions to the scattering phase shift: $\Phi_M = \phi_R + \phi_{sc}$

$$\Phi_M = -\arctan\left(\frac{\mathrm{Im}\tilde{I}_2}{\mathrm{Re}\tilde{I}_2}\right) + \arctan\left(\frac{1-2G_S\tilde{I}_1}{2G_S|\tilde{I}_2|^2} \cdot \frac{\mathrm{Im}\tilde{I}_2}{P_M + \frac{1-2G_S\tilde{I}_1}{2G_S|\tilde{I}_2|^2}\mathrm{Re}\tilde{I}_2}\right)$$

(P. Zhuang, J. Hufner, S. P. Klevansky, Nucl. Phys. A576, 525-552 (1994).)

$$\Phi_M = \phi_R + \phi_{sc} \; .$$

□ > < E > < E</p>

э

$$\Phi_M = \phi_R + \phi_{sc} \; .$$

We can represent the total scattering phase shift Φ_M as

$$\Phi_M = \frac{i}{2} \ln \frac{1 - 2G_S \Pi_M(\omega + i\eta, \vec{q})}{1 - 2G_S \Pi_M(\omega - i\eta, \vec{q})}$$

伺 ト く ヨ ト く ヨ ト

3

$$\Phi_M = \phi_R + \phi_{sc} \; .$$

We can represent the total scattering phase shift Φ_M as

$$\Phi_M = \frac{i}{2} \ln \frac{1 - 2G_S \Pi_M(\omega + i\eta, \vec{q})}{1 - 2G_S \Pi_M(\omega - i\eta, \vec{q})}$$

Using

$$\Pi_M\left(q_0,\vec{0}\right) = 4N_cN_f \ I_1 - 2N_cN_fP_M \ I_2 = \widetilde{I}_1 - P_M\widetilde{I}_2,$$

and

$$\frac{i}{2}\ln\left(\frac{1-ix}{1+ix}\right) = \arctan x$$

we show that

$$\Phi_M = -\arctan\left[\frac{2G_S P_M \text{Im}\widetilde{I}_2}{1 - 2G_S \widetilde{I}_1 + 2G_S P_M \text{Re}\widetilde{I}_2}\right]$$

伺 ト く ヨ ト く ヨ ト

э

$$\Phi_M = -\arctan\left[\frac{2G_S P_M \operatorname{Im} \widetilde{I}_2}{1 - 2G_S \widetilde{I}_1 + 2G_S P_M \operatorname{Re} \widetilde{I}_2}\right]$$

日本・日本・日本

э

$$\Phi_M = -\arctan\left[\frac{2G_S P_M \operatorname{Im} \widetilde{I}_2}{1 - 2G_S \widetilde{I}_1 + 2G_S P_M \operatorname{Re} \widetilde{I}_2}\right]$$

(several steps more)

$$\Phi_{M} = -\arctan\left[\frac{\frac{\mathrm{Im}\tilde{I}_{2}}{\mathrm{Re}\tilde{I}_{2}} - \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}} \cdot \frac{\mathrm{Im}\tilde{I}_{2}}{P_{M} + \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}}\mathrm{Re}\tilde{I}_{2}}}{1 + \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}} \cdot \frac{\mathrm{Im}\tilde{I}_{2}^{2}}{P_{M}\mathrm{Re}\tilde{I}_{2} + \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}}\mathrm{Re}\tilde{I}_{2}^{2}}}\right]$$

э

< ∃ > < ∃

$$\Phi_M = -\arctan\left[\frac{2G_S P_M \operatorname{Im} \tilde{I}_2}{1 - 2G_S \tilde{I}_1 + 2G_S P_M \operatorname{Re} \tilde{I}_2}\right]$$

(several steps more)

$$\Phi_{M} = -\arctan\left[\frac{\frac{\mathrm{Im}\tilde{I}_{2}}{\mathrm{Re}\tilde{I}_{2}} - \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}} \cdot \frac{\mathrm{Im}\tilde{I}_{2}}{P_{M} + \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}}\mathrm{Re}\tilde{I}_{2}}}{1 + \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}} \cdot \frac{\mathrm{Im}\tilde{I}_{2}}{P_{M}\mathrm{Re}\tilde{I}_{2} + \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}}\mathrm{Re}\tilde{I}_{2}^{2}}}\right]$$

Using

$$-(\arctan\alpha \pm \arctan\beta) = -\arctan\left[\frac{\alpha \pm \beta}{1 \mp \alpha\beta}\right]$$

э

→ ∃ → < ∃</p>

$$\Phi_M = -\arctan\left[\frac{2G_S P_M \operatorname{Im} \tilde{I}_2}{1 - 2G_S \tilde{I}_1 + 2G_S P_M \operatorname{Re} \tilde{I}_2}\right]$$

(several steps more)

$$\Phi_{M} = -\arctan\left[\frac{\frac{\mathrm{Im}\tilde{I}_{2}}{\mathrm{Re}\tilde{I}_{2}} - \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}} \cdot \frac{\mathrm{Im}\tilde{I}_{2}}{P_{M} + \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}}\mathrm{Re}\tilde{I}_{2}}}{1 + \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}} \cdot \frac{\mathrm{Im}\tilde{I}_{2}}{P_{M}\mathrm{Re}\,\tilde{I}_{2} + \frac{1-2G_{S}\tilde{I}_{1}}{2G_{S}|\tilde{I}_{2}|^{2}}\mathrm{Re}\tilde{I}_{2}}}\right].$$

Using

$$-(\arctan\alpha \pm \arctan\beta) = -\arctan\left[\frac{\alpha \pm \beta}{1 \mp \alpha\beta}\right]$$

we get

$$\Phi_M = -\arctan\left(\frac{\mathrm{Im}\tilde{I}_2}{\mathrm{Re}\tilde{I}_2}\right) + \arctan\left(\frac{1-2G_S\tilde{I}_1}{2G_S|\tilde{I}_2|^2} \cdot \frac{\mathrm{Im}\tilde{I}_2}{P_M + \frac{1-2G_S\tilde{I}_1}{2G_S|\tilde{I}_2|^2}\mathrm{Re}\tilde{I}_2}\right)$$

< □ > < □ > < □ > < Ξ > < Ξ >

Now then

$$\Phi_M = \phi_{sc} + \phi_R = -\arctan\left(\frac{\mathrm{Im}\tilde{I}_2}{\mathrm{Re}\tilde{I}_2}\right) + \arctan\left(\frac{1 - 2G_S\tilde{I}_1}{2G_S|\tilde{I}_2|^2} \cdot \frac{\mathrm{Im}\tilde{I}_2}{P_M + \frac{1 - 2G_S\tilde{I}_1}{2G_S|\tilde{I}_2|^2}\mathrm{Re}\tilde{I}_2}\right)$$

・ロト ・回ト ・ヨト ・ヨト

Now then

$$\Phi_M = \phi_{sc} + \phi_R = -\arctan\left(\frac{\mathrm{Im}\tilde{I}_2}{\mathrm{Re}\tilde{I}_2}\right) + \arctan\left(\frac{1 - 2G_S\tilde{I}_1}{2G_S|\tilde{I}_2|^2} \cdot \frac{\mathrm{Im}\tilde{I}_2}{P_M + \frac{1 - 2G_S\tilde{I}_1}{2G_S|\tilde{I}_2|^2}\mathrm{Re}\tilde{I}_2}\right)$$

Our analysis is a combined approach:

$$D_M(s) = \frac{1}{\pi} \frac{d\phi_M(s)}{ds} = \begin{cases} \delta(s - M_M^2) + \frac{1}{\pi} \frac{d}{ds} \phi_{sc}(s) , & T < T_{\text{Mott}} , \\ \\ \frac{a_R}{\pi} \frac{\Gamma_M M_M}{(s - M_M^2)^2 + \Gamma_M^2 M_M^2} + \frac{1}{\pi} \frac{d}{ds} \phi_{sc}(s) , & T > T_{\text{Mott}} . \end{cases}$$

< □ > < □ > < □ > < Ξ > < Ξ >

э

3

э

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

P

< E> < E>

P

< E> < E>

P

< E> < E>

P

<> ≥ ► < ≥ ►</p>

æ

< E> < E>

P

- ₹ 🖹 🕨

_∢ ≣ ⊁

æ

< E

⇒ ≣⇒

э

문 🕨 🔹 문

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

э

э

э

э

э

-

э

э

3

æ

-

∢ ≣ ≯

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

æ

∃ ► < ∃</p>

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

æ

∃ ► < ∃</p>

æ

-

≪ ≣⇒

æ

< E

æ

< E

æ

< E

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

æ

< E

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

æ

< E

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

æ

-

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

æ

3 🕨 🖌 3

э

-

3

э

-

3

э

3 🕨 🖌 3

Summary: Levinson's Theorem & analytical properties

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

- ▲ 🖓 🕨 - ▲ 🖻

< E

Role of scattering continuum (Levinson theorem!) for pressure:

Quark + pion pressure

A fantastic result !!

A fantastic result !!

David Blaschke Generalized Beth-Uhlenbeck for mesons and diquarks

□ ▶ ▲ □ ▶ ▲ □

3

Diquark phase shifts at finite temperature

э

Polyakov-loop suppression of diquark pressure

D.R. M. Ruballa and A. Dubinin in preparation (2014) A. Baschke Generalized Beth-Uhlenbeck for mesons and diquarks

Partial pressures in a quark-meson-diquark system

D.B., M. Buballa and A. Dubinin, in preparation (2014)

Generic model for hadronic phase shifts in medium

D.B., M. Buballa and A. Dubinin, in preparation (2014)

Schematic hadron resonance gas with Mott effect

D.B., M. Buballa and A. Dubinin, in preparation (2014)

Conclusions - part I

- PNJL model: suitable for describing χ SB and restoration at finite temperature, it describes pions as $q\bar{q}$ bound states and pseudo-Goldstone bosons $\rightarrow m(T)$, $M_M(T)$, $\Gamma_M(T)$
- pressure P(T) for quark mean-field: suppression of quarks for $T < T_c$, correct SB limit
- Gaussian fluctuations in σ , $\vec{\pi}$: Generalized Beth-Uhlenbeck
- resonance approximation for pionic mode above $T_{\rm Mott}$ violates Levinson's theorem!
- an analytic formula for the continuum states' contribution to the scattering phase shift together with the Breit-Wigner ansatz for the resonance
- resulting phase shift obeys the Levinson theorem
 - ightarrow pressure reduction (ideally to zero) for $T>T_{
 m Mott}$
- **outlook**: semi-microscopic approach to implement Mott effect for hadrons (here: only pions) consistent with Levinson's theorem into hadron resonance gas (HRG) models

Part II: Lattice QCD: Theoretical laboratory of QCD

The energy density normalized by T^4

as a function of the temperature on $N_t = 6.8$ and 10 lattices.

The pressure normalized by T^4 as a function of the temperature on N_t =6,8 and 10 lattices.

S. Borsanyi et al. "The QCD equation of state with dynamical quarks," JHEP **1011**, 077 (2010)

S. Borsanyi et al. "The QCD equation of state with dynamical quarks," JHEP **1011**, 077 (2010)

$$P_{\rm HRG}(T) = \sum_{i,m_i < 1 {\rm GeV}} \delta_i d_i T \int \frac{d^3 p}{(2\pi)^3} \ln \left\{ 1 + \delta_i e^{-\sqrt{p^2 + m_i^2}/T} \right\}$$
Hagedorn resonance gas: comparison with Lattice QCD

$$P_{\rm HRG}(T) = \sum_{i,m_i < 1.5 {\rm GeV}} \delta_i d_i T \int \frac{d^3 p}{(2\pi)^3} \ln \left\{ 1 + \delta_i e^{-\sqrt{p^2 + m_i^2}/T} \right\}$$

Hagedorn resonance gas: comparison with Lattice QCD

$$P_{\rm HRG}(T) = \sum_{i,m_i < 2 {\rm GeV}} \delta_i d_i T \int \frac{d^3 p}{(2\pi)^3} \ln \left\{ 1 + \delta_i e^{-\sqrt{p^2 + m_i^2}/T} \right\}$$

Hagedorn resonance gas: comparison with Lattice QCD

$$\begin{split} P_{\rm HRG}(T) &= \sum_{i,m_i < 2 {\rm GeV}} \delta_i d_i T \int \frac{d^3 p}{(2\pi)^3} \ln \left\{ 1 + \delta_i e^{-\sqrt{p^2 + m_i^2}/T} \right\} \\ {\rm Courtesy:} \ {\rm M. \ Naskret \ (UWr)} \end{split}$$

- 4 回 2 - 4 □ 2 - 4 □

э

Hagedorn resonance gas: hadrons with finite widths

The energy density per degree of freedom with the mass M

$$\varepsilon(T,\mu_B,\mu_S) = \sum_{i: m_i < m_0} g_i \ \varepsilon_i(T,\mu_i;m_i)$$

+
$$\sum_{i: m_i \ge m_0} g_i \ \int_{m_0^2}^{\infty} d(M^2) \ A(M,m_i) \ \varepsilon_i(T,\mu_i;M)$$

Spectral function

$$A(M,m) = N_M \frac{\Gamma \cdot m}{(M^2 - m^2)^2 + \Gamma^2 \cdot m^2} ,$$

$$\Gamma(T) = C_\Gamma \left(\frac{m}{T_H}\right)^{N_m} \left(\frac{T}{T_H}\right)^{N_T} \exp\left(\frac{m}{T_H}\right)$$

Hagedorn resonance gas: hadrons with finite widths

$$P(T) = T \int_0^T dT' \; \frac{\varepsilon(T')}{T'^2} \; .$$

 N_m in the range from $N_m = 2.5$ (dashed) to $N_m = 3.0$ (solid). $C_{\Gamma} = 10^{-4}$ $N_T = 6.5$ $T_H = 165$ MeV

$$\Gamma(T) = C_{\Gamma} \left(\frac{m}{T_H}\right)^{N_m} \left(\frac{T}{T_H}\right)^{N_T} \exp\left(\frac{m}{T_H}\right)$$

D.B. & K. Bugaev, Fizika B 13, 491 (2004); PPNP 53, 197 (2004)

Mott-Hagedorn resonance gas

State-dependent hadron resonance width

$$A_i(M, m_i) = N_M \frac{\Gamma_i \cdot m_i}{(M^2 - m_i^2)^2 + \Gamma_i^2 \cdot m_i^2} ,$$

$$\Gamma_i(T) = \tau_{\text{coll}, i}^{-1}(T) = \sum_j \lambda \langle r_i^2 \rangle_T \langle r_j^2 \rangle_T n_j(T)$$

D. B., J. Berdermann, J. Cleymans, K. Redlich, PPN 8, 811 (2011) [arXiv:1102.2908]

For pions (mesons)

$$r_{\pi}^2(T,\mu) = rac{3M_{\pi}^2}{4\pi^2 m_q} |\langle ar q q
angle_T|^{-1} \ ; \ \langle ar q q
angle_T \Longrightarrow$$
 Talk by J. Jankowski

For nucleons (baryons)

$$r_N^2(T,\mu) = r_0^2 + r_\pi^2(T,\mu); \qquad r_0 = 0.45 {\rm fm} \ \ {\rm pion} \ {\rm cloud}.$$

Quarks and gluons are missing!

Mott-Hagedorn resonance

gas: Pressure and energy density for three values of the mass threshold $m_0 = 1.0 \text{ GeV}$ (solid lines) $m_0 = 0.98 \text{ GeV}$ (dashed lines) and $m_0 = 0$ (dash-dotted lines) Systematic expansion of the pressure as the thermodynamical potential in the grand canonical ensemble for a chiral quark model of the PNJL type beyond its mean field description $P_{\rm PNJL,MF}(T)$ by including perturbative corrections

$$P(T) = P_{\rm MHRG}(T) + P_{\rm PNJL,MF}(T) + P_2(T) ,$$

$$P_{\rm MHRG}(T) = \sum_i \delta_i d_i T \int \frac{d^3 p}{(2\pi)^3} \int dM A_i(M, m_i) T \ln\left\{1 + \delta_i e^{-[\sqrt{p^2 + M^2} - \mu_i]/T}\right\}$$

Quark and gluon contributions

$$P_2(T) = P_2^{\text{quark}}(T) + P_2^{\text{gluon}}(T)$$

Quark and gluon contributions

Total perturbative QCD correction

$$P_2 = -\frac{8}{\pi} \alpha_s T^4 (I_\Lambda^+ + \frac{3}{\pi^2} ((I_\Lambda^+)^2 + (I_\Lambda^-)^2))$$
$$\xrightarrow{\Lambda/T \to 0} -\frac{3\pi}{2} \alpha_s T^4$$

where

$$I_{\Lambda}^{\pm} = \int_{\Lambda/T}^{\infty} \frac{\mathrm{d}x \ x}{\mathrm{e}^{x} \pm 1}$$

· Energy corrections

$$\varepsilon_2(T) = T \frac{dP_2(T)}{dT} - P_2(T) .$$

Quarks, gluons and hadron resonances

- Quark-gluon plasma contributions are described within the improved PNJL model with α_s corrections.
- Heavy hadrons are described within the resonance gas with finite width exhibiting a Mott effect at the coincident chiral and deconfinement transitions.

A 3 b

L. Turko, D. Blaschke, D. Prorok, J. Berdermann, J. Phys. Conf. Ser. 455, 012056 (2013)

Quarks, gluons and hadron resonances II

- Contribution restricted to the region around the chiral/deconfinement transition 170-250 MeV
- Fit formula for the pressure

$$P = aT^4 + bT^{4.4} \tanh(cT - d),$$

$$a = 1.0724, b = 0.2254,$$

 $c = 0.00943, d = 1.6287$

Application: Parton fraction in the EoS \rightarrow HIC Simulations

L. Turko et al., [arxiv:1402.xxxx] (07.02.2014) Compare: M. Nahrgang et al., *Influence of hadronic bound states above* T_c ..., PRC 89, 014004 (2014), [arxiv:1305.6544]

Conclusions - part II

- An effective model description of QCD thermodynamics at finite temperatures which properly accounts for the fact that in the QCD transition region it is dominated by a tower of hadronic resonances.
- A generalization of the Hagedorn resonance gas thermodynamics which includes the finite lifetime of hadronic resonances in a hot and dense medium

To do

- Join hadron resonance gas with quark-gluon model.
- Calculate kurtosis and compare with lattice QCD.
- Spectral function for all low-lying hadrons from microphysics (PNJL model ...).

・ 同 ト ・ ヨ ト ・ ヨ ト

Part III: Chemical Freeze-out in the QCD Phase Diagram

"Old" freeze-out data from RHIC (red), SPS (blue), AG (black), SIS (green).

"New" freeze-out data from STAR BES @ RHIC. Centrality dependence!

F. Becattini, J. Manninen, M. Gazdzicki, Phys. Rev. C73 (2006) 044905 Lokesh Kumar (STAR Collab.), arxiv:1201.4203 [nucl-ex]

Chemical freeze-out condition

$$\tau_{\exp}(T,\mu) = \tau_{\operatorname{coll}}(T,\mu)$$
$$\tau_{\operatorname{coll}}^{-1}(T,\mu) = \sum_{i,j} \sigma_{ij} n_j$$
$$\sigma_{ij} = \lambda \langle r_i^2 \rangle \langle r_j^2 \rangle$$

D.B. et al., Few Body Systems (2011) arxiv:1109.5391 [hep-ph]

B. Povh, J. Hüfner, PRD 46 (1992) 990

Hadronic radii and chiral condensate

$$\begin{split} r_{\pi}^2(T,\mu) &= \frac{3}{4\pi^2} F_{\pi}^{-2}(T,\mu) \ . \\ F_{\pi}^2(T,\mu) &= -m_0 \langle \bar{q}q \rangle_{T,\mu} / m_{\pi}^2. \\ r_{\pi}^2(T,\mu) &= \frac{3m_{\pi}^2}{4\pi^2 m_q} |\langle \bar{q}q \rangle_{T,\mu}|^{-1} \\ r_N^2(T,\mu) &= r_0^2 + r_{\pi}^2(T,\mu) \ , \end{split}$$

Expansion time from entropy conservation

 $S = s(T, \mu) V(\tau_{exp}) = const$

$$\tau_{\exp}(T,\mu) = a \ s^{-1/3}(T,\mu) \ ,$$

D.B., J. Berdermann, J. Cleymans, K. Redlich,

Few Body Systems (2011) [arxiv:1109.5391]

H.-J. Hippe and S. Klevansky, PRC 52 (1995) 2172

Ladenburg (1992)

Clue to the effectiveness: (De)localization !

$$\begin{split} r_{\pi}^2(T,\mu) &= \frac{3}{4\pi^2} F_{\pi}^{-2}(T,\mu) \ . \\ F_{\pi}^2(T,\mu) &= -m_0 \langle \bar{q}q \rangle_{T,\mu} / m_{\pi}^2 . \\ r_{\pi}^2(T,\mu) &= \frac{3m_{\pi}^2}{4\pi^2 m_q} |\langle \bar{q}q \rangle_{T,\mu}|^{-1} \\ r_N^2(T,\mu) &= r_0^2 + r_{\pi}^2(T,\mu) \ , \end{split}$$

Effective hadron (de)localization at the chiral restoration transition, a la *Mott-Anderson (de-)localization* of electron wave functions in the insulator-metal transition [Nobel prize (1977)]. D.B., J. Berdermann, J. Cleymans, K. Redlich,

Few Body Systems (2011) [arxiv:1109.5391]

H.-J. Hippe and S. Klevansky, PRC 52 (1995) 2172

Sir N.F. Mott P.W. Anderson

Chiral Condensate in a Hadron Resonance Gas

$$\begin{aligned} \frac{\langle \bar{q}q \rangle}{\langle \bar{q}q \rangle_{\text{vac}}} &= 1 - \frac{m_0}{F_\pi^2 m_\pi^2} \bigg\{ 4N_c \int \frac{dp \, p^2}{2\pi^2} \frac{m}{\varepsilon_p} \left[f_{\Phi}^+ + f_{\Phi}^- \right] \\ &+ \sum_{M=f_0,\omega,\dots} d_M (2 - N_s) \int \frac{dp \, p^2}{2\pi^2} \frac{m_M}{E_M(p)} f_M(E_M(p)) \\ &+ \sum_{B=N,\Lambda,\dots} d_B (3 - N_s) \int \frac{dp \, p^2}{2\pi^2} \frac{m_B}{E_B(p)} \left[f_B^+(E_B(p)) + f_B^-(E_B(p)) \right] \bigg\} \\ &- \sum_{G=\pi,K,\eta,\eta'} \frac{d_G r_G}{4\pi^2 F_G^2} \int dp \, \frac{p^2}{E_G(p)} f_G(E_G(p)) \end{aligned}$$

S. Leupold, J. Phys. G (2006) D.B., J. Berdermann, J. Cleymans, K. Redlich, Few Body Systems (2011)

David Blaschke

Generalized Beth-Uhlenbeck for mesons and diquarks

Chemical Freeze-out and Chiral Condensate

Chemical freeze-out vs. Condensate

Chemical freeze-out from kinetic condition, schematic model

伺 ト イヨト イヨト

D.B., J. Berdermann, J. Cleymans, K. Redlich, Few Body Systems (2011)

Chemical Freeze-out and Chiral Condensate

Chemical freeze-out vs. Condensate

Chemical freeze-out from kinetic condition, $a\sim$ inverse system size

- 4 同 ト 4 ヨ ト 4 ヨ

D.B., J. Berdermann, J. Cleymans, K. Redlich, in preparation (2014)

Strong T-Dependence of (inelastic) Collision Time

See: C. Blume in: NICA White Paper (2012)C. Wetterich, P. Braun-Munzinger, J. Stachel, PLB (2004)D.B., J. Berdermann, J. Cleymans, K. Redlich, in preparation (2014)

- The model works unreasonably well!
- Improvements are plenty:
 - Hadron mass formulae, e.g. from holographic QCD ...
 - Spectral functions generalized Beth-Uhlenbeck
 - Thermodynamics ... hydrodynamics .
- Beyond freeze-out towards the deconfined phase: Mott-Hagedorn model

Visit (the University of) Wroclaw !

Thank you for collaboration !

