Mach cones in viscous heavy-ion collisions

Ioannis Bouras

in collaboration with B. Betz, Z. Xu and C. Greiner

I. Bouras et al., Phys. Rev. Lett. 103:032301 (2009)
I. Bouras et al., PRC 82, 024910 (2010)
I. Bouras et al., Phys.Lett. B710 (2012)
I. Bouras et al., arXiv:1401.3019 (2014)

Bundesministerium für Bildung und Forschung

NeD & TURIC Workshop 2014 09.06. – 14.06.2014 Hersonissos, Crete, Greece

Helmholtz International Center

Jet-quenching and two-particle correlations in HIC

Possible contributions to this double-peak structure:

- **Deflected jets**
- Jet-medium interaction resulting into Shock waves in form of Mach cones
- Triangular flow originated from initial state fluctuations \rightarrow Phys.Rev.Lett. 110 (2013) 012302

Phys. Rev. Lett. 103, 242301 (2009)

Do Mach Cones have something to do with double peaks? Do they contribute to the double-peak structure observed in experiments?

The Parton Cascade BAMPS

 Transport algorithm solving the Boltzmann equation using Monte Carlo techniques

$$p^{\mu}\partial_{\mu}f(x,p)=C_{22}+C_{23}+...$$

Boltzmann Approach for Multi-Parton Scatterings

Stochastic interpretation of collision rates

$$P_{2i} = v_{rel} \frac{\sigma_{2i}}{N_{test}} \frac{\Delta t}{\Delta^3 x}$$

Z. Xu & C. Greiner, Phys. Rev. C 71 (2005) 064901

 In general: pQCD interactions, 2 ↔ 3 processes, quarks and gluons

The Parton Cascade BAMPS

Boltzmann Approach for Multi-Parton Scatterings

for
$$2 \rightarrow 2$$
 $P_{22} = v_{rel} \frac{\sigma_{22}}{N_{test}} \frac{\Delta t}{\Delta^3 x}$
for $2 \rightarrow 3$ $P_{23} = v_{rel} \frac{\sigma_{23}}{N_{test}} \frac{\Delta t}{\Delta^3 x}$
for $3 \rightarrow 2$ $P_{32} = \frac{1}{8E_1E_2E_3} \frac{I_{32}}{N_{test}^2} \frac{\Delta t}{(\Delta^3 x)^2}$

Z. Xu & C. Greiner, Phys. Rev. C 71 (2005) 064901

$$I_{32} = \frac{1}{2} \int \frac{d^3 p'_1}{(2\pi)^3 2E'_1} \frac{d^3 p'_2}{(2\pi)^3 2E'_2} |M_{123 \to 1'2'}|^2 (2\pi)^4 \delta^{(4)} (p_1 + p_2 + p_3 - p'_1 - p'_2)$$

 If a source (perturbation) is propagating faster than the speed of sound, then a Mach Cone structure is observed

Investigation of Mach Cones In a static system

- Static System, no expansion
- Jet energy is fixed and cannot be deflected
 → two different scenarios of the energy
 deposition:
- PED: pure energy deposition
- JET: energy and momentum deposition

Viscous Solutions of Mach Cones

Mach Cone structure still visible for $\eta/s = 0.1 - 0.15$

Mach Cones in BAMPS Two Particle Correlations for ideal solution Numerical Results

10 GeV/fm IDEAL 200 GeV/fm

The source term plays a big role for observation a double peak structure

Mach Cones in BAMPS Two Particle Correlations for viscous solution Numerical Results

Viscosity does not help for the development fo the double peak structure

Investigation of Mach Cones In Full relativistic HIC

- Initial conditions as given at RHIC using a parametrization for the distribution function
- The main difference to the static is the (longitudinal and transverse) expansion of the medium
- Jet energy is not fixed. Jet looses energy and can be deflected
- For simplicity we investigate only full central collisions, b=0 fm, and focus only at midrapidity

Initial conditions of the bulk medium

- Glauber initial conditions in transverse direction
- Parametrization for the non-thermal single-distribution function

$$f(\vec{x},\vec{p}) = K \frac{1}{E} \left(\frac{Q^n}{Q^n + p_T^n} \right)^m \exp\left(-\frac{y_{\rm rap}^2}{\sigma_y^2}\right) \exp\left(-\frac{z^2}{\sigma_z^2}\right) T_{\rm A}\left(x + \frac{b}{2}, y\right) T_{\rm B}\left(x - \frac{b}{2}, y\right)$$

Nuclear Thickness function Wo $T_{\rm A}(x,y) = \int_{-\infty}^{+\infty} dz \rho_{\rm A}(x,y,z) \qquad \rho_{\rm A}(\vec{x})$

Wood-Saxon distribution

$$\rho_{\mathrm{A}}(\vec{x}) = rac{
ho_{0}}{1 + \exp\left(rac{|\vec{x}| - R_{\mathrm{A}}}{D}
ight)}$$

with

 $D = 0.54 \text{ fm} \qquad \sigma_y = 1 \qquad b = 0 \text{ fm}$ $Q = 1.3 \text{ GeV} \qquad \sigma_z = 0.13 \text{ fm} \qquad \rho_0 = 0.17 \text{ fm}^{-3}$ $m = 1.5 \qquad K = 0.0135 \qquad R_A = 1.12A^{1/3} - 0.86A^{-1/3}$

Jet initialisation on top → Surface Emission

- Jet is initialised on a semicircle in the midrapidity, while we have to consider several jet paths
 - → Due to symmetry reasons we can can neglect several possible jet paths
- We neglect the near-side jet and consider only the jet traversing the medium

Betz et al. Phys.Rev.Lett. 105 (2010) 222301

- Single jet event on the semi circle
- Results are shown at midrapidity for several values of viscosities and time steps
- Jet propagates in opposite direction to radial flow
- Small viscosity means strong shock wave development - Large viscosity smooths out the characteristic structure
- Shock front region of Mach cone is strongly curved due to jet quenching

- Single jet event on the semi circle is able to generate a double-peak structure
- Head shock and diffusion wake is superimposed by the radial flow, contribution of Mach cone wings can show up
- Double-peak structure shows up only for higher-momentum particles

- Single jet event on the semi circle
- Results are shown at midrapidity for several values of viscosities and time steps
- Jet-induced Mach cone is strongly distorted due to radial flow
- Small viscosity means strong shock wave development - Large viscosity smooths out the characteristic structure

- Single jet event on the semi circle generates only one peak
- Head shock and diffusion wake is only deflected, which generates the one peak
- Viscosity tends to turn the peak into the the initial propagation direction

- We take all paths of the jet on the semi-circle
- A double-peak structure appears due to the contribution of the Mach cone wings (scenario I) and the superposition of the deflected and distorted jet-induced Mach cones (scenario II)
- Viscosity tends to destroy this double-peak structure

Conclusion

We considered the contribution to the double-peak structure originating from jet-medium interaction inducing Mach cones in a simplified setup...

- In a static system the double-peak structure is overshadowed by the head shock and diffusion wake
- In a scenario where the interplay with the medium plays a role, our studies show that a double-peak structure can be generated by the Mach cone wings in a single jet event, but its contribution seems to be very small
- The largest contribution comes from distorted jet-induced Mach cones
- In case viscosity is too large, any signal of Mach cones or doublepeak structure ist destroyed

Implementation of initial stage fluctuations in BAMPS in collaboration with K. Gallmeister

• Monte Carlo Glauber sampling instead of smooth initial sampling

Focus:

- A + A and p + A collisions
- Extracting flow observables v2, v3 and compare them with initial excentricities
- Extracting two-particle correlations

- Mach cone evolution after subtracting the background

The Parton Cascade BAMPS

For this setup :

- Boltzmann gas, isotropic cross sections, elastic processes only
- Implementing a constant η/s , we locally get the cross section σ_{22} :

Z. Xu & C. Greiner, Phys.Rev.Lett.100:172301,2008

$$\sigma_{22} = \frac{6}{5} \frac{T}{s} \left(\frac{\eta}{s}\right)^{-1}$$

Static Box in BAMPS

- Static Box with a constant temperature. Medium is initially in thermal equilibrium
 → no expansion of the medium
- Two different source terms are applied for this study

Punch Through Scenario

A scenario usefull to investigate the shape and development of ideal Mach Cones

- Jet has finite initial energy and momentum E = pz and is massless; no transverse momentum → px = py = 0
- The Jet deposits energy to the medium due to binary collisions with particles
- After every collision with a thermal particle of the medium the energy of the jet gets recharged to its inital value

Pure energy deposition Scenario

Energy deposition via the creation of thermal distributed particles

- The source (green) propagates with the speed of light and generates new particles (blue) at different timesteps
- The advantage of that method: a constant energy deposition but no momentum deposition, because new particles are thermal distributed

The Relativistic Riemann Problem Investigation of Shock Waves in one dimension

Boltzmann solution of the relativistic Riemann problem ->what effects have viscosity?

Mach Cones Mach angle dependence

 In the case of a stronger perturbation the energy deposition is larger and therefore shock waves develop which exceed the speed of sound. Therefore the angle is approximately given by

$$\alpha = \arccos \frac{v_{shock}}{v_{jet}} \qquad v_{shock} = \left[\frac{(P_4 - P_3)(e_3 + P_4)}{(e_4 - e_3)(e_4 + P_3)} \right]^{\frac{1}{2}}$$

- The emission angle $\, \alpha \,$ changes to smaller values than in the weak perturbation case

Mach Cones in BAMPS Two Particle Correlations Analytical solution

Assume two wings in thermal equilibrium

alpha is a const and corresponds to the Mach angle, where v_coll is the collective velocity of matter velocity in the wings

Mach Cones in BAMPS Two Particle Correlations Analytical solution

• We are looking for the angle ω , which is the angle in the p_x and p_z plane

One calculate for each wing the particle distribution

$$\frac{dN}{d\omega} = \frac{V}{(2\pi)^3} \iint p^2 \sin(\theta) e^{-u_{\mu} p^{\mu}/T} dp d \theta$$

In the end one has to add both contributions!

Mach cones at Bevalac?

Mach cones in static medium

- Curved structure due to jet quenching
- Viscosity destroys the structure

