GENERATION OF HIGHER FLOW HARMONICS IN HYDRODYNAMICS WITH JETS IN RELATIVISTIC HIC'S

E. Zabrodin

in collaboration with

L. Bravina, H. Brusheim Johansson, J. Crkovska,

G. Eyyubova, V. Korotkikh, I. Lokhtin, L. Malinina,

S. Petrushanko, and A. Snigirev

University of Oslo and Moscow State University NeD/TURIC-2014

Hersonissos, Crete, Greece (9.06-14.06.2014)

OUTLINE

- I. Description of anisotropic flow in relativistic heavy ion collisions:
- (a) elliptic and triangular flows
- (b) initial fluctuations and higher harmonics
- II. HYDJET++ model (hydro + jets)
- **III. Quadrangular flow and pentagonal flow**
- **IV. Hexagonal flow**

I. DESCRIPTION OF ANISOTROPIC FLOW IN RELATIVISTIC HEAVY ION COLLISIONS

$$v_2 = \left\langle \cos(2(\phi - \psi_R)) \right\rangle \propto \epsilon$$

Elliptic flow is quantified by the second Fourier coefficient (v_2) of the observed particle distribution

J.-Y. Ollitrault (TORIC-2010)

Eccentricity fluctuations

Depending on where the participant nucleons are located within the nucleus at the time of the collision, the actual shape of the overlap area may vary: the orientation and eccentricity of the ellipse defined by participants fluctuates.

Assuming that v_2 scales like the eccentricity, eccentricity fluctuations translate into v_2 fluctuations

Eccentricity fluctuations can be computed in MC Glauber model or derived from experiment by comparing different methods for flow calculation.

ECCENTRICITY

STANDARD

TRIANGULAR FLOW

B. Alver and G.Roland, PRC 81 (2010) 054905

The triangular initial shape leads to triangular hydrodynamic flow

INITAL-STATE FLUCTUATIONS (example)

W.-L. Qian et al., JPG 41 (2013) 015103

Energy distribution of a random NeXuS event

Non-zero higher Fourier coefficients can carry important information about the space-time evolution of the QCD-matter and initial fluctuations

CROSS-TALK BETWEEN FLOW HARMONICS

Only the first few flow harmonics of final-state hadrons survive after hydrodynamic evolution

CROSS-TALK BETWEEN FLOW HARMONICS

The basic response of v2 and v3 to eccentricities is approx. linear
 Higher flow coefficients show poor correlation with the eccentricities of the same order

SCALING OF HIGHER ORDER FLOW HARMONICS

ATLAS, PRC 86 (2012) 014907

II. HYDJET++ = FASTMS + HYDJET

HYDJET++

event generator to simulate heavy ion event as merging of two independent components (**soft** hydro-type part + **hard** multi-partonic state)

http://cern.ch/lokhtin/hydjet++

I.Lokhtin, L.Malinina, S.Petrushanko, A.Snigirev, I.Arsene, K.Tywoniuk, Comp.Phys.Comm. 180 (2009) 779

Soft

the "thermal" hadronic state generated on the chemical and thermal freeze-out hypersurfaces obtained from the parametrization of relativistic hydrodynamics with present freeze-out conditions (the adapted event generator FAST MC).

Hard

the multiple scattering of hard partons is based on accumulated energy loss via gluon radiation which is associated with each parton scattering in expanding quark-gluon fluid (PYQUEN jet quenching model).

We apply HYDJET++ with tuned input parameters to reproduce the LHC data from PbPb collisions, and to estimate an influence of the hard production mechanism on physics observables.

LHC DATA VS. HYDJET++ MODEL Particle spectra Pb+Pb @ 2.76 ATeV

Closed symbols: ALICE data ; Lines: HYDJET++

LHC DATA VS. HYDJET++ MODEL Elliptic flow Pb+Pb @ 2.76 ATeV

Closed symbols: CMS data v2{2Part & LYZ}; Open symbols and histograms: HYDJET++ v2{EP & Psi2} C74 (2014) 2807 Eur. Phys. J Bravina et al

LHC DATA VS. HYDJET++ MODEL Elliptic flow Pb+Pb @ 2.76 ATeV

Closed symbols: ATLAS data v2{RP}; Open symbols and histograms: HYDJET++ v2{EP & Psi2}

LHC DATA VS. HYDJET++ MODELTriangular flowPb+Pb @ 2.76 ATeV

Closed symbols: CMS data v3{2Part & LYZ}; Open symbols and histograms: HYDJET++ v3{EP & Psi3}

LHC DATA VS. HYDJET++ MODELTriangular flowPb+Pb @ 2.76 ATeV

Closed symbols: ATLAS data v3{RP}; Open symbols and histograms: HYDJET++ v3{EP & Psi3}

Eur. Phys. J C74 (2014) 2807 Bravina et al

III. HIGHER HARMONICS: V4 and V5

LHC DATA VS. HYDJET++ MODELQuadrangular flowPb+Pb @ 2.76 ATeV

Closed symbols: CMS data v4{2Part & LYZ}; Open symbols and histograms: HYDJET++ v4{EP & Psi2} v4 is there even if v3 is absent

LHC DATA VS. HYDJET++ MODEL Pentagonal flow Pb+Pb @ 2.76 ATeV

v5 is zero if either v2 or v3 is absent

Closed symbols: CMS data v5{2Part & Psi5}; Open symbols and histograms: HYDJET++ v5{EP & Psi3}

IV. HIGHER HARMONICS: hexagonal flow v6

LHC DATA VS. HYDJET++ MODEL Hexagonal flow Pb+Pb @ 2.76 ATeV

Closed symbols: CMS data v6{Psi2 & LYZ}; Open symbols and histograms: HYDJET++ v6{Psi2} v6 is non-zero if either v2 or v3 is absent

Hexagonal flow:

$V_6 \propto \alpha V_2^3 + \beta V_3^2$

Bravina et al., PRC 89, 024909 (2014)

It would be interesting to study $V_6(\Psi_2)$ and $V_6(\Psi_3)$ in experiment

Hexagonal flow: centrality dependence

Hexagonal flow: correlator analysis

CONCLUSIONS

The HYDJET++ model allows us to investigate flow of hydro and jet parts separately, to look at reconstruction of pure hydro flow and its modification due to jet part.

- > HYDJET++ permits us to study cross-talk of v2 and v3, while other harmonics are absent
- If only v2 is present, only even harmonics appear; odd harmonics arise if v3 is included
- > Scaling of $v_6^{1/6}(psi_2)/v_2^{1/2}(psi_2)$ is predicted
- Jets result to increase by 10%-15% of this ratio and lead to rise of its high-pT tail
- Significant part of hexagonal flow and other higher order harmonics comes from elliptic and triangular flows

Back-up Slides

HEXAGONAL FLOW IN HYDJET++ AT LHC

Bravina et al., PRC 89, 024909 (2014)

(1) V6 is weak(2) Its high-pt tail increases with rising pT

Extraction of V6 (Event Plane method)

Methods for v_2 calculation

(1) Event plane method

$$v_2^{obs} \{EP\} = \langle \cos 2(\varphi_i - \Psi_2) \rangle$$

 Ψ_2 is the calculated reaction plane angle: $\tan n\psi_n = \frac{\sum_i \omega_i \sin n\varphi_i}{\sum_i \omega_i \cos n\varphi_i}, \quad n \ge 1, \quad 0 \le \psi_n < 2\pi/n$
 $v_2 \{EP\} = \frac{v_2^{obs} \{EP\}}{R} = \frac{v_2^{obs} \{EP\}}{\langle \cos 2(\Psi_2 - \Psi_R) \rangle}$

(2) Two particle correlation method

$$v_2 \{2\} = \sqrt{\left\langle \cos 2(\varphi_i - \varphi_j) \right\rangle}$$

(3) Lee-Yang zero method
$$G(ir) = \langle e^{irQ} \rangle, Q = \sum \cos(2\varphi)$$

Integral v₂ is connected with the first minimum r₀ of the module of the G(ir): $v_2 = \frac{j_0}{Nr_0}$

Differential flow is calculated by the formula:

$$\frac{v_2(p_T)}{Nv_2} = \operatorname{Re}\left(\frac{\left\langle \cos(2\varphi)e^{ir_0Q} \right\rangle}{\left\langle Qe^{ir_0Q} \right\rangle}\right)$$