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Issue	  with	  the	  Resonances	  in	  hadron-‐hadron	  collisions:	  Interferences	  
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Inside	  the	  	  HADES	  acceptance	  

4.2 Characteristics of p+K++Λ Production

Figure 4.8: Angular correlations of the three particles for the HADES data set
(black points) shown with phase space simulations of pK+Λ (blue
dots). The upper index at the angle indicates the rest frame (RF)
in which the angle is investigated. The lower index names the two
particles between which the angle is evaluated. CM stands for the
center of mass system. B and T denotes the beam and target vector,
respectively.
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What	  we	  included	  to	  model	  the	  PK+Λ	  process:	  

Bonn-‐Gatchina	  ParUal	  Wave	  Analysis	  



Issue	  with	  the	  Resonances	  in	  hadron-‐hadron	  collisions:	  Interferences	  

p+ p(@3.5GeV ) !

p+K+ + ⇤

p+N⇤ ! p+K+ + ⇤

Measured	  Data	  
PWA	  soluUons	  

CM	  Angle	  

Jackson	  Angle	  

Helicity	  Angle	  

work	  in	  progress	  

Inside	  HADES	  acceptance	  Inside	  the	  HADES	  acceptance	  

preliminary	  



Issue	  with	  the	  Resonances	  in	  hadron-‐hadron	  collisions:	  Interferences	  

p+ p(@3.5GeV ) !

p+K+ + ⇤ p+N⇤ ! p+K+ + ⇤

Measured	  Data	  
PWA	  soluUons	  

4 Exclusive Event Selection and Model Description

Figure 4.10: Invariant masses of two particles for the HADES data set (black
points) shown with the best PWA solution (blue dots) fitted to
these data.

Figure 4.11: Invariant masses of two particles for the WALL data set (black
points) shown with the best PWA solution (blue dots), obtained
by a fit to the HADES data only.

solution, obtained only from the HADES events, was compared to the events in
the WALL data sample. Figures 4.11 and 4.13 point out that the experimental
data inside of the WALL acceptance (black data) can be described to a large
extent by the PWA solution (blue points). Because the solution is not biased by
the WALL data-set, this is a proof of a certain predictive power of the solution for
detector-blind regions. Since the HADES data-set contains no particles emitted
in the very forward direction (0.33◦ to 7.17◦), and the WALL does, these two
data-set can not be seen as sub-sets of one-another but are independent. This
is an important quality check for the PWA code.
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4 Exclusive Event Selection and Model Description

Table 4.3: Different versions of N* combinations in the PWA input.

No. Combination

0 N(1650), N(1710), N(1720)
1 N(1650), N(1710), N(1720), N(1900)
2 N(1650), N(1710), N(1720), N(1895)
3 N(1650), N(1710), N(1720), N(1880)
4 N(1650), N(1710), N(1720), N(1875)
5 N(1650), N(1710), N(1720), N(1900), N(1880)
6 N(1650), N(1710), N(1720), N(1900), N(1895)
7 N(1650), N(1710), N(1720), N(1900), N(1875)
8 N(1650), N(1710), N(1720), N(1895), N(1880)
9 N(1650), N(1710), N(1720), N(1895), N(1875)

10 N(1650), N(1710), N(1720), N(1880), N(1875)

Table 4.4: Different sets of non-resonant waves in the PWA input.

No. Combination

0 no non-resonant waves
1 (pL)(1S0)− K
2 previous wave + (pL)(3S1)− K
3 previous waves + (pL)(1P1)− K
4 previous waves + (pL)(3P0)− K
5 previous waves + (pL)(3P1)− K
6 previous waves + (pL)(3P2)− K
7 previous waves + (pL)(1D2)− K
8 previous waves + (pL)(3D1)− K
9 previous waves + (pL)(3D2)− K

best. For each N* combination the solution with the best loglikelihood was de-
termined. This value depends only on the number of non-resonant waves that
have been included. Table 4.5 shows the loglikelihood value for each N* com-
bination. The four best results are marked in bold. Table 4.6 summarizes the
four best solutions and their further naming scheme. The overall best agree-
ment with the data is obtained with a solution that contains N(1650), N(1710),
N(1720), N(1900) and N(1895) as well as nine non-resonant waves of pK+Λ. The
superposition of the four best solutions in comparison to the data is illustrated
by a gray band in Figures 4.16 and 4.17. The width of the band represents the
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4 Exclusive Event Selection and Model Description

Figure 4.10: Invariant masses of two particles for the HADES data set (black
points) shown with the best PWA solution (blue dots) fitted to
these data.

Figure 4.11: Invariant masses of two particles for the WALL data set (black
points) shown with the best PWA solution (blue dots), obtained
by a fit to the HADES data only.

solution, obtained only from the HADES events, was compared to the events in
the WALL data sample. Figures 4.11 and 4.13 point out that the experimental
data inside of the WALL acceptance (black data) can be described to a large
extent by the PWA solution (blue points). Because the solution is not biased by
the WALL data-set, this is a proof of a certain predictive power of the solution for
detector-blind regions. Since the HADES data-set contains no particles emitted
in the very forward direction (0.33◦ to 7.17◦), and the WALL does, these two
data-set can not be seen as sub-sets of one-another but are independent. This
is an important quality check for the PWA code.

100
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Intermediate	  Conclusions	  I	  

•  Decay	  chains	  for	  Resonances	  can	  be	  determined	  by	  exclusive/semi-‐exclusive	  
measurements	  of	  final	  state	  in	  p+p	  and	  p+n	  collision	  for	  energies	  between	  2-‐10	  
GeV	  

•  Interferences	  among	  resonances	  play	  an	  important	  role	  for	  some	  final	  states	  (	  for	  
dileptons	  too	  btw)	  but	  those	  can	  	  be	  esUmated	  using	  PWA	  on	  elementary	  
collisions	  like	  p+N	  and	  π+N.	  A	  4π	  distribuUon	  can	  be	  extracted	  which	  one	  could	  
implement	  into	  transport	  models.	  	  

•  SUll...	  A	  systemaUc	  analysis	  of	  different	  data	  sets	  at	  different	  energies	  is	  needed	  to	  
pin	  down	  quanUtaUvely	  the	  contribuUon	  of	  N*	  to	  pKΛ	  e.g.	  

•  Upcoming	  measurements	  of	  π+N	  and	  π+A	  for	  p=0.8-‐1.65	  GeV/c	  and	  planned	  PWA	  
analysis	  to	  determine	  N*	  and	  Δ	  yields	  and	  their	  contribuUon	  to	  the	  strange	  and	  
dilepton	  final	  states.	  



Kaons	  in	  really	  cold	  nuclear	  maWer	  

p+Nb, 3.5 GeV 

K0 
K0 

K+ 

K0 
ππ0 

Inside	  the	  Nucleus:	  
The	  K0	  experiences	  a	  potenUal	  
due	  to	  the	  surrounding	  nucleons.	  
ModificaUon	  of	  these	  processes.	  
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K0S	  in	  cold	  nuclear	  ma6er	  

Neutral	  kaons	  measured	  by	  HADES	  in	  p+p	  and	  p+93Nb	  collisions	  at	  3.5	  GeV:	  

Data	  are	  interpreted	  with	  the	  GiBUU	  transport	  
model	  (collaboraUon	  with	  T.	  Gaitanos	  and	  J.	  Weil)	  

O.	  Buss	  et	  al.,	  Phys.	  Rept.	  512,	  1	  (2012)	  
hWp://gibuu.physik.uni-‐giessen.de/GiBUU/	  

K0	  producUon	  in	  nucleon-‐nucleon	  reacUons	  

K0	  producUon	  in	  secondary	  processes	  

Kaon-‐nucleon	  scaWering	  

Kaon	  
potenUal	  

Kaon	  emission	  in	  pNb	  reacUons	  is	  a	  complex	  process.	  
p+p@3.5 GeV 

p+Nb@3.5 GeV 



K0	  producUon	  in	  nucleon-‐nucleon	  reacUons	  

K0	  producUon	  in	  secondary	  processes	  

Kaon-‐nucleon	  scaWering	  

Kaon	  
potenUal	  



np-reactions isospin interrelations (one example):

Cross section parameterization:

Number of 
particles Final state What is in the 

model

3-body p Σ+ K0 p Σ+ K0

4-body

p π+ Λ K0 Δ++ Λ K0

p π+ Σ0 K0 Δ++ Σ0 K0

n π+ Σ+ K0

Δ+ Σ+ K0

p π0 Σ+ K0

K0 production channels:

Resonance model of kaon production 
All production channels:

Note:
 1. Pion production goes exclusively through Δ.
 2. No angular anisotropies in production.

Note: this is what’s 
inside transport code

almost no experimental data for np!



K0
S from p+p@ 3.5GeV 

HADES	  arXiv:1403.6662	  [nucl-‐ex].,	  accepted	  by	  PRC	  	  



pNb data vs. tuned resonance model 

‣  KN potential is OFF. 
‣  3-body reactions in np (np → NYK) poorly constrained, scale factor 0.5 is applied 
to the Tsushima parameterizations. 
‣  GiBUU simulations based on tuned resonance model describe data. 
 

GiBUU w/o pot.	

	


p+Nb@3.5 GeV 

HADES, arXiv:1404.7011 	




K0	  producUon	  in	  nucleon-‐nucleon	  reacUons	  

K0	  producUon	  in	  secondary	  processes	  

Kaon-‐nucleon	  scaWering	  

Kaon	  
potenUal	  



Rapidity distribution and role of secondary reactions 

all K0 sources besides pp or np

ΔNK+ scat.

πN

‣  Significant contribution of secondary reactions at backward rapidities 
(~70%). 
‣  Three main sources: 
‣  ΔN-reactions. Rely on the resonance model (Tsushima et al.). 
‣  πN-reactions. 
‣  KN scattering. 

How well the two last processes are known?

p+Nb@3.5 GeV 

HADES, arXiv:1404.7011 	




Secondary processes: pion-nucleon reactions 

ρ=0

Pictures from K. Tsushima, A. Sibirtsev, A.W. Thomas, PRC62 (2000) 064904

ρ=ρ0

ρ=2ρ0

‣  Elementary cross sections  
   are known well and  
   parametrized in the model.
‣  No angular distributions  
   implemented in the model.

pion momentum range in pNb



K0	  producUon	  in	  nucleon-‐nucleon	  reacUons	  

K0	  producUon	  in	  secondary	  processes	  

Kaon-‐nucleon	  scaWering	  

Kaon	  
potenUal	  



Kaon-nucleon scattering 

Elastic cross section Total cross section

Parametrization: M. Effenberger, PhD. Giessen, 1999.

‣  Vacuum cross sections are well known.
‣  K0N scattering from isospin considerations.
‣  No angular distributions implemented in the model  
   (some data are available).



Elastic cross section Total cross section

Parametrization: M. Effenberger, PhD. Giessen, 1999.

‣  Vacuum cross sections are well known.
‣  K0N scattering from isospin considerations.
‣  No angular distributions implemented in the model  
   (some data are available).

Kaon-nucleon scattering 



K0	  producUon	  in	  nucleon-‐nucleon	  reacUons	  

K0	  producUon	  in	  secondary	  processes	  

Kaon-‐nucleon	  scaWering	  

Kaon	  
potenUal	  



Kaons properties in Matter 
How to describe the properties of Kaon in nuclear matter? 
Effective Chiral Lagrangian with Kaons and Nucleons as degree of Freedom 

Mean Field Dynamics 

C. Fuchs Progr. In Part and Nucl. Phys. 56 (2006) 1-103 
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FIG. 7. (Color online) In-medium ChPT kaon potential U =
E∗

− E (in MeV) as a function of the baryonic density and
the kaon momentum.

old, used in this experiment.
In order to quantify the agreement between the exper-

imental data and the simulations including or excluding
the in-medium kaon potential, we perform a χ2-analysis.
A covariance matrix is employed where the diagonal en-
tries are statistical and systematic uncertainties added
in quadrature and the off-diagonal entries are governed
by the global multiplicative normalization uncertainty of
15%.
The χ2 values obtained for the simulations with (filled

circles) and without (empty circles) potential are shown
in Fig. 8 as a function of the parameter set number. A
significantly lower χ2 value is achieved by the simulations
including the in-medium ChPT potential. Furthermore,
the strength of the potential has been varied by the choice
of the pion decay constant that governs the repulsive vec-
tor part of the potential. The χ2 values obtained with a
less repulsive version of the potential (≈ 25 MeV for the
kaon at rest and at normal nuclear density) are indicated
by crosses, and those obtained with a more repulsive ver-
sion (≈ 45 MeV)— by triangles. The data systematically
disfavour the weaker potential of ≈ 25 MeV, whereas the
more repulsive potential can not be excluded.
The model includes a number of poorly constrained

parameters (mostly kaon production cross sections for
the channels that are hard or impossible to measure, such
as np → NYK, ∆N → NYK, etc.). Therefore, it is
necessary to study the stability of the results by varying
the parameters of the model.
We performed systematic checks, results of which are

shown in Fig. 8. The parameter set 1 corresponds to the
standard choice of all parameters, as explained above.
All other variations are described in Table II. Each row in
this table corresponds to a 25% variation of a particular
channel’s strength with respect to the standard values.
An exception is the parameter set 10, for which strengths
of two channels were varied simultaneously.
As follows from Fig. 8, for all these variations of the

Parameter set
0 1 2 3 4 5 6 7 8 9 10

/N
DF

2 χ

0

5

10

15

20

FIG. 8. (Color online) χ2 values for different variations of the
parameters entering the model. Empty circles — simulations
without potential, filled circles — simulations with potential
(≈ 35 MeV at ρB = ρ0). Crosses correspond to the less repul-
sive potential (≈ 25 MeV) and triangles to the more repulsive
one (≈ 45 MeV). See text and Table II for the description of
different parameter sets.

TABLE II. Variations of the model parameters

Set Channel Variation, %

2 σ(∆N → KX) +25

3 σ(∆N → KX) −25

4 σ(πN → KX) +25

5 σ(πN → KX) −25

6 σ(np → NYK) +25

7 σ(np → NYK) −25

8 σ(KN → KX) +25

9 σ(KN → KX) −25

10 σ(np → NYK) & +30

σ(NN → ∆(1232)Y ∗K) −30

input parameters, simulations with the in-medium poten-
tial constantly deliver lower χ2 values than simulations
without the potential.
The rapidity distribution of kaons detected in p+Nb

collisions is shown in Fig. 9. Contrary to the symmet-
ric bell-shaped spectrum in proton-proton reactions, we
observe a strong shift of the distribution towards target
rapidity. Integration of the simulated distribution, justi-
fied by the fact that the experimental data are described
well, allows to estimate the inclusive production cross
section of neutral kaons:

σ(p+Nb → K0 +X) = 8.3± 1.2 mb, (4)

where the quoted error represent the dominating absolute
normalization uncertainty.
The rapidity distribution is well described by the

GiBUU simulations. According to the model, the shape
of the distribution is strongly influenced by the re-

ρ0 

Profile for p+Nb 

HADES, arXiv:1404.7011 	


2.2.1 Mean field dynamics

For estimates of kaon mass shifts in nuclear matter and kaon dynamics in heavy ion reactions the above
Lagrangian (17) is usually applied in mean field approximation. Already in the early 90ties mean field
calculations were carried out in the Nambu-Jona-Lasinio (NJL) model [17]. In the context of chiral
SU(3) dynamics the mean field approximation means to treat the KN interaction at the tree level. The
in-medium Klein-Gordon equation for the kaons follows from (17) via the Euler-Lagrange equations

[

∂µ∂µ ±
3i

4f 2
π

jµ∂µ +

(

m2
K −

ΣKN

f 2
π

ρs

)]

φK±(x) = 0 . (20)

Here jµ = ⟨N̄γµN⟩ is the nucleon four-vector current and ρs = ⟨N̄N⟩ the scalar baryon density. With
the vector potential

Vµ =
3

8f 2
π

jµ (21)

and an effective kaon mass m∗
K defined as [46]

m∗
K =

√

m2
K −

ΣKN

f 2
π

ρs + VµV µ (22)

the Klein-Gordon Eq. (20) can be written as

[

(∂µ ± iVµ)2 + m∗2
K

]

φK±(x) = 0 . (23)

Thus the vector field is introduced by minimal coupling into the Klein-Gordon with opposite signs for
K+ and K− while the effective mass m∗

K is equal for both. Introducing effective momenta (k∗
µ = (E∗,k∗))

as well
k∗

µ = kµ ∓ Vµ (24)

the Klein-Gordon equation (20,23) reads in momentum space

[

k∗2 −m∗2
K

]

φK(k) = 0 . (25)

Eq. (25) is just the mass-shell constraint for quasi-particles inside the nuclear medium. There exists
now a complete analogy to the quasi-particle picture for the nucleons in relativistic mean field theory,
e.g. in the Walecka model of Quantum Hadron Dynamics (QHD) [47] where the nucleon obeys an
effective Dirac equation

[/k∗ −m∗] u(k) = 0

for the in-medium nucleon spinors u. From Eqs. (25) the dispersion relation follows

E(k) = k0 =
√

k∗2 + m∗2
K ± V0 . (26)

In nuclear matter at rest where the space-like components of the vector potential vanish, i.e. V = 0
and k∗ = k, Eq. (26) reduces to

E(k) =

√

k2 + m2
K −

ΣKN

f 2
π

ρs + V 2
0 ± V0 . (27)

Eq. (26) accounts for the full Lorentz structure, a fact which comes into play when heavy ion collisions
are considered where one has to transform between different reference frames, e.g. the center-of-mass

9

T. Gaitanos, K. Lapidus -> GiBUU 



GiBUU w/o pot.	

GiBUU w. pot.	
 p+Nb

Effect of the potential in pNb: p-θ spectra 
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FIG. 6. (Color online) K0
S transverse momentum spectra in p+Nb collisions: experimental data (black circles) and GiBUU

transport model simulations with (cyan) and without (blue) in-medium ChPT KN potential. The widths of the bands indicate
the statistical uncertainties of the simulated data sample. The long-dashed curve shows the total contribution of all K0

production channels excluding pp and np collisions. Major secondary processes are: ∆N- (dotted curve), πN-reactions (hatched
area) and the contribution from the charge-exchange reactions K+N → K0N(π) (dash-dotted curve).

described above, we adopt a scaling factor of 0.5 for
all three-body processes in the neutron-proton channel,
n + p → N + Y + K. (Further we vary the strengths
of these channels before making any interpretation of ex-
perimental results.) The resonance model, modified in
this way, gives a good description of the experimental
data. Contributions of various secondary processes, as
implemented in the GiBUU model, are shown in Fig. 6
as well.
We note that the spectra shown in Fig. 6 might be rea-

sonably approximated by a Boltzmann fit with reduced
χ2 values varying from 3 to 5 in different rapidity bins.
The extracted slope parameter TB(y) amounts to 85 MeV
at backward rapidity (yCM ≈ −0.8) and exhibits a max-
imum of 100 MeV at yCM ≈ −0.2.
The GiBUU simulations incorporate the repulsive kaon

potential resulting from the Chiral Perturbation Theory
(ChPT) [47–52]. The ChPT model is governed by the
ΣKN term appearing in the scalar sector of the in-medium
kaon interaction and by the pion decay constant fπ enter-
ing into the vector part. A range of ΣKN = 450±30 MeV
is given in [53]; we use a value of 450 MeV. For the pion
decay constant a reduced in-medium value f∗

π =
√
0.6fπ

is adopted [4] according to studies of Brown and Rho [53].
Note that such an in-medium reduction of the pion de-
cay constant is supported from precision spectroscopy of
pionic atoms [54]. The ChPT in-medium kaon potential
shows a non-linear density dependence, resulting from
the corresponding density dependence of the effective
kaon mass [52, 55, 56]. Note that the ChPT in-medium
kaon potential features an explicit momentum depen-
dence. It differs, therefore, from the customary linear
parameterization of the potential in terms of the kaon in-

medium mass m∗
K = m0

K (1− α× ρB/ρ0), where α is a
parameter (negative for kaons) that governs the strength
of the potential. The latter parameterization was used by
the IQMD [57] and HSD [58] transport models for the in-
terpretation of heavy-ion [10] and pion-induced data [8],
respectively. A non-linear density and momentum de-
pendence of the in-medium kaon interaction is obtained
also by other approaches. Indeed, within a One-Boson-
Exchange formulation and using the relativistic mean-
field approximation, the in-medium kaon energy slightly
grows with baryon density, in a similar way as the ChPT
results but with a different curvature [52]. At normal
nuclear density and for the kaon at rest, the ChPT po-
tential results in a magnitude of ≈ 35 MeV, set by the
numerical values of the parameters ΣKN and f∗

π .
Figure 7 illustrates the deviation of the kaon in-

medium energy E∗ from the vacuum energy given by a
standard dispersion relation E =

√

p2 +m2 as a func-
tion of the baryonic density ρ and the kaon momentum
p. This figure results from GiBUU calculations and shows
the approximate region of baryonic densities and mo-
menta probed by kaons in pNb reactions at 3.5 GeV.
We note that the potential is significant already in a di-
lute systems (ρ ∼ ρ0/2). At higher densities (ρ ∼ ρ0) a
strong momentum dependence resulting from the func-
tional form of the in-medium kaon dispersion relation [4]
is visible.
The in-medium potential leads to a rapidity-dependent

modification of the simulated pt spectra (Fig. 6). Ac-
cording to the GiBUU model, the apparent effect of the
repulsive potential felt by kaons inside the nuclear en-
vironment is moderate, which can be attributed to the
high beam energy, far above the kaon production thresh-
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FIG. 7. (Color online) In-medium ChPT kaon potential U =
E∗

− E (in MeV) as a function of the baryonic density and
the kaon momentum.

old, used in this experiment.
In order to quantify the agreement between the exper-

imental data and the simulations including or excluding
the in-medium kaon potential, we perform a χ2-analysis.
A covariance matrix is employed where the diagonal en-
tries are statistical and systematic uncertainties added
in quadrature and the off-diagonal entries are governed
by the global multiplicative normalization uncertainty of
15%.
The χ2 values obtained for the simulations with (filled

circles) and without (empty circles) potential are shown
in Fig. 8 as a function of the parameter set number. A
significantly lower χ2 value is achieved by the simulations
including the in-medium ChPT potential. Furthermore,
the strength of the potential has been varied by the choice
of the pion decay constant that governs the repulsive vec-
tor part of the potential. The χ2 values obtained with a
less repulsive version of the potential (≈ 25 MeV for the
kaon at rest and at normal nuclear density) are indicated
by crosses, and those obtained with a more repulsive ver-
sion (≈ 45 MeV)— by triangles. The data systematically
disfavour the weaker potential of ≈ 25 MeV, whereas the
more repulsive potential can not be excluded.
The model includes a number of poorly constrained

parameters (mostly kaon production cross sections for
the channels that are hard or impossible to measure, such
as np → NYK, ∆N → NYK, etc.). Therefore, it is
necessary to study the stability of the results by varying
the parameters of the model.
We performed systematic checks, results of which are

shown in Fig. 8. The parameter set 1 corresponds to the
standard choice of all parameters, as explained above.
All other variations are described in Table II. Each row in
this table corresponds to a 25% variation of a particular
channel’s strength with respect to the standard values.
An exception is the parameter set 10, for which strengths
of two channels were varied simultaneously.
As follows from Fig. 8, for all these variations of the
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FIG. 8. (Color online) χ2 values for different variations of the
parameters entering the model. Empty circles — simulations
without potential, filled circles — simulations with potential
(≈ 35 MeV at ρB = ρ0). Crosses correspond to the less repul-
sive potential (≈ 25 MeV) and triangles to the more repulsive
one (≈ 45 MeV). See text and Table II for the description of
different parameter sets.

TABLE II. Variations of the model parameters

Set Channel Variation, %

2 σ(∆N → KX) +25

3 σ(∆N → KX) −25

4 σ(πN → KX) +25

5 σ(πN → KX) −25

6 σ(np → NYK) +25

7 σ(np → NYK) −25

8 σ(KN → KX) +25

9 σ(KN → KX) −25

10 σ(np → NYK) & +30

σ(NN → ∆(1232)Y ∗K) −30

input parameters, simulations with the in-medium poten-
tial constantly deliver lower χ2 values than simulations
without the potential.
The rapidity distribution of kaons detected in p+Nb

collisions is shown in Fig. 9. Contrary to the symmet-
ric bell-shaped spectrum in proton-proton reactions, we
observe a strong shift of the distribution towards target
rapidity. Integration of the simulated distribution, justi-
fied by the fact that the experimental data are described
well, allows to estimate the inclusive production cross
section of neutral kaons:

σ(p+Nb → K0 +X) = 8.3± 1.2 mb, (4)

where the quoted error represent the dominating absolute
normalization uncertainty.
The rapidity distribution is well described by the

GiBUU simulations. According to the model, the shape
of the distribution is strongly influenced by the re-
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old, used in this experiment.
In order to quantify the agreement between the exper-

imental data and the simulations including or excluding
the in-medium kaon potential, we perform a χ2-analysis.
A covariance matrix is employed where the diagonal en-
tries are statistical and systematic uncertainties added
in quadrature and the off-diagonal entries are governed
by the global multiplicative normalization uncertainty of
15%.
The χ2 values obtained for the simulations with (filled

circles) and without (empty circles) potential are shown
in Fig. 8 as a function of the parameter set number. A
significantly lower χ2 value is achieved by the simulations
including the in-medium ChPT potential. Furthermore,
the strength of the potential has been varied by the choice
of the pion decay constant that governs the repulsive vec-
tor part of the potential. The χ2 values obtained with a
less repulsive version of the potential (≈ 25 MeV for the
kaon at rest and at normal nuclear density) are indicated
by crosses, and those obtained with a more repulsive ver-
sion (≈ 45 MeV)— by triangles. The data systematically
disfavour the weaker potential of ≈ 25 MeV, whereas the
more repulsive potential can not be excluded.
The model includes a number of poorly constrained

parameters (mostly kaon production cross sections for
the channels that are hard or impossible to measure, such
as np → NYK, ∆N → NYK, etc.). Therefore, it is
necessary to study the stability of the results by varying
the parameters of the model.
We performed systematic checks, results of which are

shown in Fig. 8. The parameter set 1 corresponds to the
standard choice of all parameters, as explained above.
All other variations are described in Table II. Each row in
this table corresponds to a 25% variation of a particular
channel’s strength with respect to the standard values.
An exception is the parameter set 10, for which strengths
of two channels were varied simultaneously.
As follows from Fig. 8, for all these variations of the
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TABLE II. Variations of the model parameters

Set Channel Variation, %

2 σ(∆N → KX) +25

3 σ(∆N → KX) −25

4 σ(πN → KX) +25

5 σ(πN → KX) −25

6 σ(np → NYK) +25

7 σ(np → NYK) −25

8 σ(KN → KX) +25

9 σ(KN → KX) −25

10 σ(np → NYK) & +30

σ(NN → ∆(1232)Y ∗K) −30

input parameters, simulations with the in-medium poten-
tial constantly deliver lower χ2 values than simulations
without the potential.
The rapidity distribution of kaons detected in p+Nb

collisions is shown in Fig. 9. Contrary to the symmet-
ric bell-shaped spectrum in proton-proton reactions, we
observe a strong shift of the distribution towards target
rapidity. Integration of the simulated distribution, justi-
fied by the fact that the experimental data are described
well, allows to estimate the inclusive production cross
section of neutral kaons:

σ(p+Nb → K0 +X) = 8.3± 1.2 mb, (4)

where the quoted error represent the dominating absolute
normalization uncertainty.
The rapidity distribution is well described by the

GiBUU simulations. According to the model, the shape
of the distribution is strongly influenced by the re-
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Intermediate	  Conclusions	  II	  

p+A	  at	  3.5	  GeV	  :	  ρ0	  
	  detailed	  comparison	  of	  the	  experimental	  data	  for	  the	  inclusive	  K0s	  to	  ONE	  
Transport	  model	  (GiBUU)	  
Pirimide	  Approach:	  
	  	  	  -‐>	  Elementary	  cross-‐secUons	  
	  	  	  -‐>	  Check	  scaWering	  effects	  via	  Rapidity	  density	  distribuUon	  
	  	  	  -‐>	  Secondary	  processes	  included	  	  
	  	  	  -‐>	  Test	  of	  the	  Chiral	  potenUal	  
	  
Result	  for	  K0s:	  
	  Repulsive	  potenUal	  around	  40	  MeV	  for	  k=0	  and	  ρ=ρ0	  	  
	  Factor	  2	  larger	  than	  extracted	  from	  Flow	  in	  HIC	  and	  previous	  π+A	  measurement	  
	  

-‐>	  new	  Measurements	  for	  π+A	  at	  high	  rate	  with	  HADES	  in	  3	  weeks.	  



Λ	
 System	  of	  interest:	  p+Nb	  at	  3.5	  GeV	  

Femtoscopy	  is	  seldomly	  done	  at	  low	  energies	   Possibility	  to	  test	  model	  predicUons	  at	  this	  
low	  energies	  and	  establish	  trends	  
with	  results	  from	  larger	  energies	  
	  

Results	  from	  the	  p+Nb	  system:	  

Proton-‐Proton	  –	  correlaUons:	  

Qout	  [MeV/c]	  

Qside	  [MeV/c]	  

Qlong	  [MeV/c]	  

C(
Q
ou

t)	  
C(
Q
si
de
)	  

C(
Q
lo
ng
)	  

Preliminary	  

CorrelaUon	  funcUon	  depends	  on	  scaWering	  length:	  	   Lednicky	  model	  

ReconstrucUon	  via	  



Thank	  you	  




