Properties of strange hadrons in vacuum and cold nuclear matter

Laura Fabbietti, Technische Universitaet Muenchen

\section*{At SIS18, GSI}
\section*{HADES}

Analysis of the data and tuning of the transport codes:

TECHNISCHE UNIVERSITAT MÜNCHEN

Petersburg Nuclear Physics Institute

JUSTUS-LIEBIG-

Andrej Sarantsev
Theodor Gaitanos

FIAS Frankfurt Institute
for Advanced Studies

Janus Weil

Energy Regime

Proton Energy $[\mathrm{GeV}]$	$1-4$	30	
Heavy lon Energy $[\mathrm{AGeV}]$	$1-2$	$2-10$	$\sqrt{s}=4-11 \mathrm{GeV}$

At SIS18

Purpose: Creation of Compressed baryonic matter ρ up to 5-6 ρ_{0} ??

At SIS100

P+P, P+NB AT 3.5GEV

Content

- Role of resonances in strangeness production in p+p collisions at 3.5 GeV
- KOs properties in cold nuclear matter p+Nb at 3.5 GeV

How to understand HIC in the GeV regime

Examine strangeness in nuclear matter in the lab (HADES experiment, GSI, Darmstadt)
Heavy-ion collisions $\rho_{B} \leq 2-3 \rho_{0}$

$\mathrm{N}-\mathrm{N}$ primary reactions
$\pi N, \Delta N$ secondary reactions
Resonance Excitation
Propagation of particles through nuclear matter
Scattering and Absorption
In-Medium Spectral Function
Mean field Approaches

Vienna University of Technology

Role Played by Resonances at intermediate Energies: I

$$
\begin{aligned}
p+p(@ 3.5 G e V) & \rightarrow \\
\Sigma(1385)^{+} & +K^{+}+n \\
& \Lambda+\pi^{+}
\end{aligned}
$$

Chinowsky, W. et al. Phys.Rev. 165 (1968) 1466-1478

$$
\begin{aligned}
& \Delta(1900-2000)^{++} \rightarrow \Sigma(1385)^{+}+K^{+} \\
& \Gamma=150-200 \mathrm{MeV} / \mathrm{c}^{2}
\end{aligned}
$$

$$
\sim 30 \% \Delta^{++}
$$

Role of the $\Delta *(1940)$ in the $\pi+p \rightarrow K+\Sigma+(1385)$ and $p p \rightarrow n K+\Sigma$ +(1385) reactions
Ju-Jun Xie, En Wang, Bing-Song Zou
arxiv. 1405.5586

$$
p+p(@ 3.5 \mathrm{GeV}) \rightarrow
$$

$$
\begin{gathered}
\Lambda+\Delta^{++}+K_{S}^{0} \\
\Sigma^{0}+\Delta^{++}+K_{S}^{0} \\
\underset{p+\pi^{+}}{ }
\end{gathered}
$$

$$
\begin{gathered}
\sigma\left(p+p \rightarrow \Lambda+\Delta^{++}+K_{S}^{0}\right)=26.27 \pm 0.64_{-2.13}^{+2.57} \pm 1.84 \mu \mathrm{~b} \\
\overline{L^{\sigma}}\left(p+p \rightarrow \Lambda+p+\pi^{+}+K_{S}^{0}\right)=2.57 \pm 0.02_{-1.98}^{+0.21} \pm 0.18 \mu \mathrm{~b}
\end{gathered}
$$

$$
p+p(@ 3.5 \mathrm{GeV}) \rightarrow
$$

$$
\begin{gathered}
\Lambda+\Delta^{++}+K_{S}^{0} \\
\Sigma^{0}+\Delta^{++}+K_{S}^{0} \\
\underset{p+\pi^{+}}{ }
\end{gathered}
$$

$$
\begin{aligned}
\sigma\left(p+p \rightarrow \Lambda+\Delta^{++}+K_{S}^{0}\right) & =26.27 \pm 0.64_{-2.13}^{+2.57} \pm 1.84 \mu \mathrm{~b} \\
\bar{L} \sigma\left(p+p \rightarrow \Lambda+p+\pi^{+}+K_{S}^{0}\right) & =2.57 \pm 0.02_{-1.98}^{+0.21} \pm 0.18 \mu \mathrm{~b}
\end{aligned}
$$

$$
p+p(@ 3.5 G e V) \rightarrow
$$

$$
p+K^{+}+\Lambda
$$

$$
p+N^{*} \rightarrow p+K^{+}+\Lambda
$$

CM Angle

Inside the HADES acceptance
Jackson Angle

Helicity Angle

$$
p+p(@ 3.5 G e V) \rightarrow
$$

$$
p+K^{+}+\Lambda
$$

$$
p+N^{*} \rightarrow p+K^{+}+\Lambda
$$

Bonn-Gatchina Partial Wave Analysis

http://pwa.hiskp.uni-bonn.de/

```
A.V. Anisovich, V.V. Anisovich, E. Klempt, V.A. Nikonov and A.V. Sarantsev
Eur. Phys. J. A 34, 129152 (2007)
```

What we included to model the $\mathrm{PK}^{+} \Lambda$ process:
N^{*} Resonances in the PDG with measured decay into $\mathrm{K}^{+} \Lambda$
$N(1650), N(1710), N(1720), N(1875), N(1880), N(1895), N(1900)$
Non-resonant $\mathrm{PK}^{+} \wedge$ production waves
Interferences

$$
p+p(@ 3.5 \mathrm{GeV}) \rightarrow
$$

$$
p+K^{+}+\Lambda
$$

Measured Data

PWA solutions
$p+N^{*} \rightarrow p+K^{+}+\Lambda$

CM Angle

Inside the HADES acceptance

Jackson Angle

Helicity Angle

\&nue with the Resonances in hadron-hadron collisions: Interferences

$$
p+p(@ 3.5 \mathrm{GeV}) \rightarrow
$$

$$
p+K^{+}+\Lambda
$$

$$
p+N^{*} \rightarrow p+K^{+}+\Lambda
$$

included resonances:
Non-resonant waves:

$N(1650), N(1710), N(1720), N(1900), N(1895)$
$(p L)\left({ }^{1} S_{0}\right)-K \quad(p L)\left({ }^{3} S_{1}\right)-K \quad(p L)\left({ }^{1} P_{1}\right)-K$
$(p L)\left({ }^{3} P_{0}\right)-K \quad(p L)\left({ }^{3} P_{2}\right)-K \quad(p L)\left({ }^{3} P_{1}\right)-K$
$(p L)\left({ }^{3} D_{1}\right)-K(p L)\left({ }^{1} D_{2}\right)-K(p L)\left({ }^{3} D_{2}\right)-K$

Intermediate Conclusions I

- Decay chains for Resonances can be determined by exclusive/semi-exclusive measurements of final state in $p+p$ and $p+n$ collision for energies between 2-10 GeV
- Interferences among resonances play an important role for some final states (for dileptons too btw) but those can be estimated using PWA on elementary collisions like $p+N$ and $\pi+N$. A 4π distribution can be extracted which one could implement into transport models.
- Still... A systematic analysis of different data sets at different energies is needed to pin down quantitatively the contribution of N^{*} to $p K \Lambda$ e.g.
- Upcoming measurements of $\pi+\mathbf{N}$ and $\pi+A$ for $p=0.8-1.65 \mathrm{GeV} / \mathrm{c}$ and planned PWA analysis to determine N^{*} and Δ yields and their contribution to the strange and dilepton final states.

Kaons in really cold nuclear matter

$\mathrm{p}+\mathrm{Nb}, 3.5 \mathrm{GeV}$

Inside the Nucleus:
The K^{0} experiences a potential due to the surrounding nucleons. Modification of these processes.

$\mathrm{K}_{\mathrm{S}}{ }_{\mathrm{s}}$ in cold nuclear matter

Neutral kaons measured by HADES in $\mathrm{p}+\mathrm{p}$ and $\mathrm{p}+{ }^{93} \mathrm{Nb}$ collisions at 3.5 GeV :

Resonance model of kaon production

All production channels:

No.	Reaction
1	$p p \rightarrow p \Lambda K^{+}$
2	$p n \rightarrow n \Lambda K^{+}$
3	$p p \rightarrow p \Sigma^{0} K^{+}$
4	$n n \rightarrow n \Sigma^{-} K^{+}$
5	$p n \rightarrow n \Sigma^{0} K^{+}$
6	$n p \rightarrow p \Sigma^{-} K^{+}$
7	$p p \rightarrow n \Sigma^{+} K^{+}$
8	$n n \rightarrow \Delta^{-} \Lambda K^{+}$
9	$p p \rightarrow \Delta^{++} \Sigma^{-} K^{+}$
10	$\Delta^{++} n \rightarrow p \Lambda K^{+}$
11	$\Delta^{-} p \rightarrow n \Sigma^{-} K^{+}$
12	$\Delta^{++} p \rightarrow \Delta^{++} \Lambda K^{+}$
13	$\Delta^{+} n \rightarrow \Delta^{0} \Lambda K^{+}$
14	$\Delta^{+} p \rightarrow \Delta^{+} \Lambda K^{+}$
15	$\Delta^{++} n \rightarrow \Delta^{++} \Sigma^{-} K^{+}$
16	$\Delta^{0} p \rightarrow \Delta^{+} \Sigma^{-} K^{+}$
17	$\Delta^{+} n \rightarrow \Delta^{+} \Sigma^{-} K^{+}$
18	$\Delta^{++} p \rightarrow \Delta^{++} \Sigma^{0} K^{+}$
19	$\Delta^{+} n \rightarrow \Delta^{0} \Sigma^{0} K^{+}$
20	$\Delta^{+} p \rightarrow \Delta^{+} \Sigma^{0} K^{+}$
21	$\Delta^{+} p \rightarrow \Delta^{0} \Sigma^{+} K^{+}$
22	$\Delta^{+} \Delta^{++} \rightarrow \Delta^{++} \Lambda K^{+}$
23	$\Delta^{0} \Delta^{++} \rightarrow \Delta^{+} \Lambda K^{+}$
24	$\Delta^{0} \Delta^{+} \rightarrow \Delta^{0} \Lambda K^{+}$
25	$\Delta^{++} \Delta^{0} \rightarrow \Delta^{++} \Sigma^{-} K^{+}$
26	$\Delta^{-} \Delta^{0} \rightarrow \Delta^{-} \Sigma^{-} K^{+}$
27	$\Delta^{0} \Delta^{++} \rightarrow \Delta^{+} \Sigma^{0} K^{+}$
28	$\Delta^{-} \Delta^{+} \rightarrow \Delta^{0} \Sigma^{-} K^{+}$

Cross section parameterization:

$$
\sigma\left(B_{1} B_{2} \rightarrow B_{3} Y K\right)=a\left(\frac{s}{s_{0}}-1\right)^{b}\left(\frac{s_{0}}{s}\right)^{c}
$$

Note: this is what's inside transport code
np-reactions isospin interrelations (one example):

$$
\begin{aligned}
\sigma\left(n n \rightarrow \Delta^{-} \Lambda K^{+}\right) & =\sigma\left(p p \rightarrow \Delta^{++} \Lambda K^{0}\right) \\
=3 \sigma\left(p n \rightarrow \Delta^{0} \Lambda K^{+}\right) & =3 \sigma\left(n p \rightarrow \Delta^{+} \Lambda K^{0}\right) \\
=3 \sigma\left(p p \rightarrow \Delta^{+} \Lambda K^{+}\right) & =3 \sigma\left(n n \rightarrow \Delta^{0} \Lambda K^{0}\right),
\end{aligned}
$$

almost no experimental data for np!
K^{0} production channels:

Number of particles	Final state	What is in the model
3-body	$\mathrm{p} \Sigma^{+} \mathrm{K}^{0}$	$\mathrm{p} \Sigma^{+} \mathrm{K}^{0}$
4-body	$\mathrm{p} \pi^{+} \wedge \mathrm{K}^{0}$	$\Delta^{++} \wedge \mathrm{K}^{0}$
	$\mathrm{p} \pi^{+} \Sigma^{0} K^{0}$	$\Delta^{++} \Sigma^{0} K^{0}$
	$\mathrm{n} \pi^{+} \Sigma^{+} \mathrm{K}^{0}$	$\Delta^{+} \Sigma^{+} K^{0}$
	$\mathrm{p} \pi^{0} \Sigma^{+} \mathrm{K}^{0}$	

Note:

1. Pion production goes exclusively through Δ.
2. No angular anisotropies in production.

$\mathrm{K}_{\mathrm{S}}^{0}$ from $\mathrm{p}+\mathrm{p} @ 3.5 \mathrm{GeV}$

HADES arXiv:1403.6662 [nucl-ex]., accepted by PRC

pNb data vs. tuned resonance model

- KN potential is OFF.
- 3-body reactions in np ($\mathrm{np} \rightarrow \mathrm{NYK}$) poorly constrained, scale factor 0.5 is applied to the Tsushima parameterizations.
- GiBUU simulations based on tuned resonance model describe data.

HADES, arXiv:1404.7011

- Significant contribution of secondary reactions at backward rapidities (~70\%).
- Three main sources:
- $\Delta \mathrm{N}$-reactions. Rely on the resonance model (Tsushima et al.).
- $п \mathrm{~N}$-reactions.
- KN scattering.

How well the two last processes are known?

Secondary processes: pion-nucleon reactions

- Elementary cross sections are known well and parametrized in the model.
- No angular distributions implemented in the model.

Kaon־nucleon scattering

Elastic cross section

Total cross section

Parametrization: M. Effenberger, PhD. Giessen, 1999.

- Vacuum cross sections are well known.
- $\mathrm{K}^{0} \mathrm{~N}$ scattering from isospin considerations.
- No angular distributions implemented in the model (some data are available).

Kaon־nucleon scattering

Elastic cross section

Total cross section

Parametrization: M. Effenberger, PhD. Giessen, 1999.

- Vacuum cross sections are well known.
- $\mathrm{K}^{0} \mathrm{~N}$ scattering from isospin considerations.
- No angular distributions implemented in the model (some data are available).

Kaons properties in Matter

How to describe the properties of Kaon in nuclear matter?
Effective Chiral Lagrangian with Kaons and Nucleons as degree of Freedom Mean Field Dynamics
C. Fuchs Progr. In Part and Nucl. Phys. 56 (2006) 1-103

$$
\begin{aligned}
& {\left[\left(\partial_{\mu} \pm i V_{\mu}\right)^{2}+m_{K}^{* 2}\right] \phi_{K^{ \pm}}(x)=0} \\
& m_{K}^{*}=\sqrt{m_{K}^{2}-\frac{\Sigma_{K N}}{f_{\pi}^{*}} \rho_{S}+V_{\mu} V^{\mu}}
\end{aligned}
$$

$V_{\mu}=\frac{3}{8 f^{*}{ }_{\pi}^{2}} j_{\mu} \begin{aligned} & \text { Vector potential attractive for } \\ & \mathrm{K}^{-} \text {repulsive for } \mathrm{K}^{+}\end{aligned}$
$\Sigma_{K N}=$ Scalar potential, $\sim 300-450 \mathrm{MeV}$, same for K^{+}and K^{-}

IM \ll Re $->$ No K ${ }^{+}$absorption
T. Gaitanos, K. Lapidus -> GiBUU

Effect of the potential in $\mathrm{pNb}: \mathrm{p}-\theta$ spectra

GiBUU w／o pot．
GiBUU w．pot．

HADES，arXiv：1404．7011
$\mathrm{p}+\mathrm{Nb}$

ーーーー $\quad p+p / p+n \rightarrow K^{0}+X$
．．．．．．．．．．．ΔN
－$\cdot-\cdot-\quad K^{+} N \rightarrow K^{0} N$

Systematic check

HADES, arXiv:1404.7011

$$
\begin{aligned}
\sigma(\Delta N \rightarrow K X) & \pm 1.25 \\
\sigma(n p \rightarrow N Y K) & \pm 1.25 \\
\sigma(\pi N \rightarrow K X) & \pm 1.25 \\
\sigma(K N \rightarrow K X) & \pm 1.25 \\
N N \rightarrow \Delta(1232) Y^{*} K & -1.25
\end{aligned}
$$

- w/o potential
- with potential ("U = +35 MeV")

$$
\chi^{2}=\sum_{i} \frac{\left(\left(d \sigma / d p_{t}\right)_{i}^{\text {exp. }}-\left(d \sigma / d p_{t}\right)_{i}^{\text {sim. }}\right)^{2}}{\sigma_{\text {exp.syst. }}^{2}}
$$

ChPT kaon potential $U=E^{*}-E[M e V]$

[MeV]

Intermediate Conclusions II

$\mathrm{p}+\mathrm{A}$ at 3.5 GeV : $\rho 0$
detailed comparison of the experimental data for the inclusive KOs to ONE
Transport model (GiBUU)
Pirimide Approach:
-> Elementary cross-sections
-> Check scattering effects via Rapidity density distribution
-> Secondary processes included
-> Test of the Chiral potential

Result for KOs:
Repulsive potential around 40 MeV for $\mathrm{k}=0$ and $\rho=\rho 0$
Factor 2 larger than extracted from Flow in HIC and previous $\pi+$ A measurement
-> new Measurements for $\pi+A$ at high rate with HADES in 3 weeks.

System of interest: $\mathbf{p + N b}$ at 3.5 GeV

Femtoscopy is seldomly done at low energies

Results from the $\mathrm{p}+\mathrm{Nb}$ system:

Proton-Proton - correlations:

Possibility to test model predictions at this low energies and establish trends with results from larger energies

Reconstruction via $\quad \Lambda \rightarrow p+\pi^{-}$

Correlation function depends on scattering length:
Lednicky model

$$
C(k)=1+\sum_{s} \rho_{s}\left[\frac{1}{2}\left|\frac{f^{s}(k)}{r_{0}}\right|^{2}\left(1-\frac{d_{0}^{s}}{2 \sqrt{\pi} r_{0}}\right)+\frac{2 \Re\left(f^{s}(k)\right)}{\sqrt{\pi} r_{0}} F_{1}\left(Q r_{0}\right)-\frac{\Im\left(f^{s}(k)\right)}{r_{0}} F_{2}\left(Q r_{0}\right)\right]
$$

Thank you

