

イロト イヨト イヨト イヨト 三日

1/13

Numerical solution of the Boltzmann equation for ultracold fermions

Pierre-Alexandre PANTEL, Dany Davesne, Michael Urban

Institut de Physique Nucléaire de Lyon - France

NeD/TURIC 2014

14 June 2014

Comparisons Cold atoms gases Fermi gases

Why cold atom gases?

- Explore the limits of many-body theories used in nuclear physics by applying them to systems of cold atoms
- Atomic clouds can simulate strongly interacting systems
- Only one parameter to describe the interaction strength: *a* (the scattering length in *s*-wave channel):

$$a = a_{bg} \left(1 - rac{\Delta B}{B - B_0}
ight)$$

 ${\cal B}$ is the external magnetic field applied to the trapped atomic cloud

• Experiments on cold atoms don't require big and expensive experimental set-up

Conclusions

Comparisons Cold atoms gases Fermi gases

From an atomic gas to a nucleus

Comparisons Cold atoms gases Fermi gases

Phase diagram of the BEC-BCS crossover

4/13

Comparisons Cold atoms gases Fermi gases

What kind of systems can be produced?

- Preparing an atomic (⁶Li, ⁴⁰K,...) gas into 2 hyperfine levels (pseudospin): $|\uparrow\rangle$ and $|\downarrow\rangle$
- Optical trap (laser) or magneto-optical trap
- Simulating polarized matter: $N_{\uparrow} \neq N_{\downarrow}$
- Systems of two different atom species (different masses): useful for quark matter
- And more: neutron matter, color superconductivity (gases with atoms in three different hyperfine levels),...

Comparisons Cold atoms gases Fermi gases

Our systems

 Harmonic trap potential with frequencies inducing a cigar-shaped gas:

 $\omega_x = \omega_y \gg \omega_z$

• Near Feshbach resonance: $(k_{\rm F}a)^{-1}
ightarrow 0^-$

 \Rightarrow strongly correlated Fermions

• Collective modes in the normal phase

Test particles method In-medium effects Tests

Boltzmann equation: resolution

$$\frac{\partial f}{\partial t} + \dot{\boldsymbol{r}} \cdot \frac{\partial f}{\partial \boldsymbol{r}} + \dot{\boldsymbol{p}} \cdot \frac{\partial f}{\partial \boldsymbol{p}} = -l[f]$$

to be solved for $N = 6.10^5$ atoms!

- Distribution function
 f = f(r, p, t)
- \dot{r} and \dot{p} considered classical
- Trapping potential V_{trap}(**r**): harmonic

- Numerical: test particles method
- Gaussian extension
- Check through collision rate

Meanfield potential $U(\mathbf{r})$ in $f(\mathbf{r}, \mathbf{p}, t)$ AND in-medium cross section in I[f]

Test particles method In-medium effects Tests

\mathcal{T} -matrix approximation

• \mathcal{T} -matrix:

$$\Gamma(\omega, \mathbf{k}) = rac{g}{1 - gJ(\omega, \mathbf{k})}$$

- *J* is the 2-particles propagator
- $g = 4\pi a/m$

- Self-energy: NSR theory $\Sigma = \overbrace{\mathcal{T}}$
- Mean field: $U = \operatorname{Re} \Sigma(0, k_{\mathsf{F}})$
- In-medium cross-section:

$$\sigma_{\mathsf{in-med}}(oldsymbol{k},oldsymbol{q}) \propto |\mathsf{\Gamma}|^2$$

8/13

э

Test particles method In-medium effects Tests

Numerical code and collision rate

<ロト < □ ト < □ ト < Ξ ト < Ξ ト < Ξ ト Ξ のQ @ 9/13

Test particles method In-medium effects Tests

Sloshing mode

- Global oscillation of the cloud along one direction: $\langle x \rangle(t)$
- Harmonic trap: Kohn's theorem

frequency = ω_x whatever the interaction

The quadrupole mode Cloud expansion

Quadrupole mode

Radius compression related to hydrodynamic behavior (superfluid?)

The quadrupole mode Cloud expansion

Quadrupole mode

Radius compression related to hydrodynamic behavior (superfluid?)

 $\langle x^2-y^2
angle(t)\propto e^{-{\sf \Gamma}_Q t}\sin(\omega_Q t)$

[Riedl et al., PRA 78, 053639; Chiacchiera et al., PRA 84, 043634]

The quadrupole mode Cloud expansion

Expanding the gas

- When $t \ge t_0$, $V_{trap} = 0$
- Experimental method to determine the temperature and density
- Significant of the collision regime: hydrodynamic? collision-less?
- Anisotropic traps \Leftrightarrow shear viscosity η/s

Looking at
$$e(t) = \sqrt{\langle r^2
angle / \langle z^2
angle}$$

(日)

[C. Cao et al., Science 331, 58 (2011)]

12/13

Summary

- Boltzmann code with in-medium effects
- Study physics of some particular state and behaviour of the matter with the collective modes

Outlook (WIP)

• Colliding polarized clouds: new collective modes

[A. Sommer et al., Nature 472, 7342 (2011)]

- Polarized gases: new superfluid phase (FFLO)
- Neutron stars, color superconductivity,...

Advertising

Trapped atomic gases:

a laboratory for thermodynamic and non-equilibrium processes for strongly correlated particles and with a lot of available data!