A bayesian analysis of hybrid star properties with the NJL model

Antoine Pfaff Francesca Gulminelli (LPC) Hubert Hansen (IP2I)

PhD student supervised by Hubert Hansen (IP2I Lyon) & Joerg Aichelin (SUBATECH Nantes)

Outline

Modelization

- The NJL model for quark matter
- The nuclear meta-model
- Hybrid EoS with Maxwell's construction
- Bayesian method

Posterior results

- Quark parameters
- Nuclear parameters
- Phase transition characteristics
- Hybrid star properties
- EoS and speed of sound

Conclusion

Introduction : the NJL model

- Effective quantum field theory (relativistic)
- Approximation of QCD in the non-perturbative domain
- Quark degrees of freedom (no gluons)
- Reproduces the flavor symmetries of QCD:

 $SU(N_f)_V \times SU(N_f)_A \times U(1)_B$

Spontaneous breaking of $SU(N_f)_A$

Dynamical generation of fermion masses

Goldstone mechanism

• (T, μ) \nearrow : symmetry restoration \implies phase transition(s) Here we take the T = 0 limit (applicable to astrophysics)

Model parameters

- $\begin{array}{c} \text{ 4 coupling constants : } G_{S}, G_{\omega}, G_{\rho}, K \\ \text{ 3 bare masses for the quarks : } m_{u\,0}, m_{d\,0}, m_{s\,0} \\ \text{ ..., } m_{s\,0} \end{array} \right\} \begin{array}{c} 8 \ (7) \\ \text{ parameters} \end{array}$

 - Fitted to mesonic data in the vacuum : m_{π} , f_{π} , m_{K} , $m_{\eta'}$, $-\langle \overline{\psi}\psi
 angle^{rac{1}{3}}$ 5 experimental input
 - We keep 2 free parameters: $\xi_{\omega} = \frac{G_{\omega}}{G_{c}}$, $\xi_{\rho} = \frac{G_{\rho}}{G_{c}}$

The NJL model for quark matter

• Vector interactions ξ_{ω} and ξ_{ρ} play crucial role at finite density

- The ω channel make the EOS stiffer (higher maximum mass)
- The ρ modifies the flavor content of the system, increases the pressure at moderate density and decreases the Fermi pressure at high density.

The nuclear EoS

Meta-model of Margueron *et al* (2018)

$$e_N(x,\delta) = t_N(x,\delta) + \sum_{\alpha} \frac{1}{\alpha!} (v_{\alpha}^{sat} + \delta^2 v_{\alpha}^{sym}) x^{\alpha} u_{\alpha}(x) \quad \text{with } x = \frac{n_B - n_{sat}}{3n_{sat}}, \delta = \frac{n_B - n_B}{n_B}$$

- ► Simple, flexible → explores all possible nuclear EoS
- Directly parametrized by the nuclear empirical parameters:

X	E_{sat}	E_{sym}	n_{sat}	L_{sym}	K_{sat}	K_{sym}	Q_{sat}	Q_{sym}	Z_{sat}	Z_{sym}	m^{\star}	Δm^{\star}
Order	0	0	1	1	2	2	3	3	4	4		
Unit	MeV	MeV	fm^{-3}	MeV								
X_{min}	-17.5	27	0.15	20	190	-400	-1200	-2000	-4000	-5000	0.6	-0.1
X_{max}	-14.5	37	0.17	80	300	300	1000	5000	5000	5000	0.8	0.2

- Unified extension in the crust, using a CLD model for the inhomogeneous phases (Carreau *et al*)
- Finite size parameters are fitted to the masses of known nuclei

J. Margueron, R. Homann Casali, and F. Gulminelli, Physical Review C 97, 025805 (2018)

T. Carreau, F. Gulminelli, and J. Margueron, The European Physical Journal A, vol. 55, (2019)

Hybrid EoS

Deconfinement phase transition:

Nuclear matter (n, p, e, μ) \longrightarrow Quark matter (u, d, s, e)

• Gibbs thermodynamical equilibrium conditions :

$$P_N = P_Q \qquad \qquad \mu_N = \mu_Q \qquad \qquad T_N = T_Q$$

• Grand canonical ensemble : $\Omega = -P$

Bayesian method

• Generate a large number (~ 10⁸) of hybrid models with flat prior on:

- The nuclear empirical parameters on the nuclear side
- The 3 free parameter of our NJL parametrization on the quark side: ξ_{ω} , ξ_{ρ} , B^*
- Impose the model to be "reasonable":
 - Thermodynamic consistency (nuclear model):
 - ▶ $0 < c_s < 1$
 - $\frac{dP}{dn_{B}} > 0$

$$e_{sym} = \frac{1}{n_{B}} \frac{\partial^{2} \rho}{\partial \delta^{2}} > 0$$

- Compatibility with the ab initio *χ*EFT energy bands (NM + SM) of Drischler *et al* (2016)
- Possibility of a PT to quark matter before reaching the TOV mass

C. Drischler, K. Hebeler, and A. Schwenk, Phys. Rev. C, vol. 93, p. 054314, May 2016.

Bayesian method

- Attribute weights to models based on their reproduction of experimental results:
 - ▶ Reaching a large enough TOV mass $(J0740+6620: M = 2.08 \pm 0.07 M_{\odot})$
 - Goodness of the fit to the experimental masses of nuclei:

$$w_{AME} = \frac{1}{N} \exp(-\frac{\chi^2}{2}) \quad \text{with } \chi^2 = \frac{1}{\nu} \sum_i \left(\frac{M^i - M^i_{AME}}{\sigma^i}\right)^2$$

• Reproduction of the PDF of $\tilde{\Lambda}$ from GW170817 (Abbott *et al*, 2019)

Posterior results – quark parameters

Posterior results – nuclear parameters

Antoine Pfaff STRONG Workshop 2021 07/10/21

D

Posterior results – phase transition characteristics

Neutron star radii

 $J0030+0451: M = 1.44 \pm 0.14 M_{\odot}$

 $J0740+6620: M = 2.08 \pm 0.07 M_{\odot}$

Both model assumptions are compatible with NICER data Inclusion of a quark PT has weak influence on the radii

Posterior results – Hybrid star properties

 $RQ_{max} \equiv$ Radius of the quark core in the maximum mass configuration $MQ_t \equiv$ Total mass of the star as quarks start to appear

Posterior results – Hybrid star properties

 $RQ_{max} \equiv$ Radius of the quark core in the maximum mass configuration $MQ_t \equiv$ Total mass of the star as quarks start to appear

Global EoS properties

Global EoS properties

Conclusions

- The bayesian framework allows us to consistently take into account all types of experimental knowledge.
- Hybrid NJL stars usually have a small QC that only appears in very heavy stars
- Relatively low impact on the radii

Low observability of the PT with X-ray radii measurements

Substantial effect on the susceptibilites (sound speed)

Thank you !

The NJL Lagrangian

Quark/gluon interaction

$$\mathcal{L}_{QCD} = \underbrace{\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - \hat{m} + \hat{\mu}\gamma_{0})\psi}_{\text{Quarks}} + \underbrace{\bar{\psi}\gamma^{\mu}\frac{\lambda_{a}}{2}A_{\mu}{}^{a}\psi}_{\text{Gluons}} - \underbrace{\frac{1}{4}F_{\mu\nu}{}^{a}F^{\mu\nu}{}_{a}}_{\text{Gluons}}$$
$$\mathcal{L}_{NJL} = \underbrace{\bar{\psi}(i\gamma^{\mu}\partial_{\mu} - \hat{m} + \hat{\mu}\gamma_{0})\psi}_{C} + \sum_{C}G^{C}(\bar{\psi}\Gamma^{C}\psi)^{2} + \mathcal{L}_{'t \, Hooft}$$

- Interaction parametrized by several coupling constants associated to the different channels considered: $G_S \ G_\rho \ G_\omega \ K$
- Total interaction must preserve the flavor symmetries
- $U(1)_A$ symmetry group broken by the 't Hooft term (anomaly)

The mean field approximation

Assume small fluctuations of the fields around a mean value

$$\widehat{\mathcal{O}} = \left\langle \widehat{\mathcal{O}} \right\rangle + \delta \widehat{\mathcal{O}}$$

For scalar interactions : $G_s(\bar{\psi}\psi)^2 \approx 2G_s\langle\bar{\psi}\psi\rangle\bar{\psi}\psi + G_s\langle\bar{\psi}\psi\rangle^2$

Mass modification

For vector interactions $G_V(\bar{\psi}\gamma_0\psi)^2 \approx 2G_V\langle\psi^{\dagger}\psi\rangle\psi^{\dagger}\psi + G_V\langle\psi^{\dagger}\psi\rangle^2$

Chemical potential modification
 With correct flavor factors following SU(N_f = 3) algebra:

$$\begin{split} m_{i} &= m_{i0} - 4G_{S} \left\langle \bar{\psi}_{i} \psi_{i} \right\rangle + 2K \left\langle \bar{\psi}_{j} \psi_{j} \right\rangle \left\langle \bar{\psi}_{k} \psi_{k} \right\rangle \\ i, j, k &= u, d, s \\ \widetilde{\mu}_{i} &= \mu_{i} - \frac{4}{3}G_{\omega}(n_{i} + n_{j} + n_{k}) - \frac{4}{3}G_{\rho}(2n_{i} - n_{j} - n_{k}) \end{split}$$

The phase transition

• Fix external conditions for NS at equilibrium:

- Zero temperature
- Charge neutrality
- β-equilibrium

$$\begin{cases} \mu_u = \mu + \frac{2}{3}\mu_e \\ \mu_d = \mu_s = \mu - \frac{1}{3}\mu_e \end{cases}$$

Chiral symmetry restoration

The phase transition

• Fix external conditions for NS at equilibrium:

- Zero temperature
- Charge neutrality
- β-equilibrium

$$\begin{cases} \mu_u = \mu + \frac{2}{3}\mu_e \\ \mu_d = \mu_s = \mu - \frac{1}{3}\mu_e \end{cases}$$

Chiral symmetry restoration

The equation of state

Fermi pressure of a Additional contribution free gas of quasi-quarks from vector interactions $P_{tot} = P_{quarks} - B_{eff} + P_{vector} + P_{leptons}$ \downarrow Effective " bag " Fermi pressure of pressure electrons (+ muons) $P_{vector} = \frac{2}{3}G_{\omega}(n_u + n_d + n_s)^2 + G_{\rho}(n_u - n_d)^2 + \frac{1}{3}G_{\rho}(n_u + n_d - 2n_s)^2$

- ω interactions couple to the total baryonic density of the system (symmetric in flavor)
- *ρ* interactions couple to the isospin and flavor hypercharge densities (asymmetric in flavor)

The equation of state

Antoine Pfaff STRONG Workshop 2021 07/10/21

Hybrid EoS

NJL pressure defined up to constant; we allow the freedom:

$$P_Q \to P_Q + B^*$$
 $\rho_Q \to \rho_Q - B^*$

where B^* is a constant free parameter satisfying $B^* < B_{max}$

• Maxwell's construction not totally consistent : μ_e discontinuity

Posterior results – phase transition characteristics

Posterior results – Hybrid star properties

Antoine Pfaff STRONG Workshop 2021 07/10/21