### **Constraints on the Dense Matter Equation of State from Neutron Stars**

David Blaschke<sup>a,b,c</sup>

- Thanks to: M. Cierniak<sup>a</sup>, O. Ivanytskyi<sup>a</sup>, T. Fischer<sup>a</sup>, M. Shahrbaf<sup>a</sup>,
  - A. Ayriyan<sup>b</sup>, A. Bauswein<sup>d</sup> & S. Typel<sup>d</sup>

a – University Wroclaw, b - JINR Dubna, c – NRNU (MEPhI) Moscow, d – GSI Darmstadt

- 1. Introduction: Recent relevant multi-messenger observations
- 2. New paradigm: Only hybrid stars fulfil new M-R constraints
- 3. Outlook: Supernovae & Mergers in the QCD phase diagram  $\rightarrow$  Constraints for the Onset of Deconfinement?

STRONG-2020 Workshop of NA7-Hf-QGP, Hersonissos, 8.10.2021







Grant No. UMO 2019 / 33 / B / ST9 / 03059

RFBR

Grant No. 18-02-40137



## Discovery: neutron star merger !



\*) B.P. Abbott et al. [LIGO/Virgo Collab.], PRL 119, 161101 (2017); ApJLett 848, L12 (2017)

## NS-NS merger !

GW170817A , announced 16.10.2017 \*)

#### **Multi-Messenger Astrophysics !!**

|                                 | Low-spin priors $( \chi  \le 0.05)$ |
|---------------------------------|-------------------------------------|
| Primary mass $m_1$              | 1.36−1.60 M <sub>☉</sub>            |
| Secondary mass $m_2$            | 1.17–1.36 <i>M</i> <sub>☉</sub>     |
| Chirp mass $\mathcal{M}$        | $1.188^{+0.004}_{-0.002} M_{\odot}$ |
| Mass ratio $m_2/m_1$            | 0.7-1.0                             |
| Total mass $m_{tot}$            | $2.74^{+0.04}_{-0.01} M_{\odot}$    |
| Radiated energy $E_{rad}$       | $> 0.025 M_{\odot}c^2$              |
| Luminosity distance $D_{\rm I}$ | $40^{+8}_{-14}$ Mpc                 |

Constraint on neutron star maximum mass  $M_{TOV} < 2.17 M_{sun}$ (Margalit & Metzger, arxiv:1710.05938)



Constraint on parameter ( $\Lambda$ <800)

$$\tilde{\Lambda} = \frac{16}{13} \frac{(m_1 + 12m_2)m_1^4 \Lambda_1 + (m_2 + 12m_1)m_2^4 \Lambda_2}{(m_1 + m_2)^5}$$

#### Dimensionless tidal deformability

$$\Lambda = (2/3)k_2[(c^2/G)(R/m)]^5$$

\*) B.P. Abbott et al. [LIGO/Virgo Collab.], PRL 119, 161101 (2017); ApJLett 848, L12 (2017)

# Compact stars and black holes in Einstein's General Relativity theory



bace-Time 
$$G_{\mu\nu} = 8\pi G T_{\mu\nu}$$
 Matter

Massive objects curve the Space-Time



Non-rotating, spherical masses  $\rightarrow$  Schwarzschild Metrics

Sp



$$ds^2 = -(1 - \frac{2M}{r})dt^2 + (1 - \frac{2M}{r})^{-1}dr^2 + r^2d\Omega^2$$

Einstein eqs.  $\rightarrow$  Tolman-Oppenheimer-Volkoff eqs.\*) For structure and stability of compact stars

$$\frac{dP(r)}{dr} = -G\frac{m(r)\varepsilon(r)}{r^2}\left(1 + \frac{P(r)}{\varepsilon(r)}\right) \left(1 + \frac{4\pi r^3 P(r)}{m(r)}\right) \left(1 - \frac{2Gm(r)}{r}\right)^{-1}$$

Newtonian case x GR corrections from EoS and metrics

\*) R. C. Tolman, Phys. Rev. 55 (1939) 364 ; J. R. Oppenheimer, G. M. Volkoff, ibid., 374

## The 1:1 relation $P(\epsilon) \leftrightarrow M(R)$ via TOV

Simple examples\*)



Free neutrons: Oppenheimer & Volkoff, Phys. Rev. 55 (1939) 374 NLW (nonlinear Walecka) model: N. K. Glendenning, Compact Stars (Springer, 2000) SQM (strange quark matter): P. Haensel, J. L. Zdunik, R. Schaeffer, A&A 160 (1986) 121

\*) courtesy: Konstantin Maslov

## The 1:1 relation $P(\epsilon) \leftrightarrow M(R)$ via TOV



0.5

0.0

2

n<sub>cen</sub> [fm

Free neutrons: Oppenheimer & Volkoff, Phys. Rev. 55 (1939) 3 NLW (nonlinear Walecka) model: N. K. Glendenning, Compact SQM (strange quark matter): P. Haensel, J. L. Zdunik, R. Schae

#### \*) courtesy: Konstantin Maslov



Constraint on maximum mass  $2.01 < M_{TOV}/M_{O} < 2.16$ (Rezzolla et al., arxiv:1710.05938) diff. rot. hypermassive NSs  $M_{max}$ only diff. rot. supramassive NSs  $\geq$ rot. supramassive NSs  $M_{\rm tov}$ only diff. rot. NSs stable rot.NSs

LVC radius constraint GW170817 (Abbott et al., PRL (2018)) GW190425 (Abbott et al., arxiv:2001.01761) NICER mass -radius constraint PSR J0030+0451 (Miller et al., ApJLett. (2019))

## Measure NS Radii ...



Thermal lightcurves: NS with "hot spots"





K.C. Gendreau et al., Proc. SPIE 8443 (2012) 844313 – first results end of 2019 !!



![](_page_9_Figure_1.jpeg)

AV18\*: Yamamoto, Togashi et al., Phys. Rev C 96 (2017) 065804 DD2\*: Typel, Röpke, Klähn, et al., Phys. Rev. C 81 (2010) 015803

Examples of hadronic EoS **all do fulfill the constraints** but none of them is applicable for Massive stars (M > 1.5 M\_sun),

Because of missing hyperons etc.

LVC radius constraint GW170817 (Abbott et al., PRL (2018)) GW190425 (Abbott et al., arxiv:2001.01761) NICER mass -radius constraint PSR J0030+0451 (Miller et al., ApJLett. (2019))

![](_page_10_Figure_1.jpeg)

Blaschke, Ayriyan, Alvarez-Castillo et al., Universe 6 (2020) 81

Examples of hadronic EoS **all do fulfill the constraints** but **none of them is applicable** for Massive stars (M > 1.5 M\_sun), Because of missing hyperons etc.

#### Which ways out?

 → stiff hypernuclear matter
 → early onset of deconfinement (M\_onset < 1.5 M\_sun)</li>

#### Old quark matter paradigm:

- $\rightarrow$  deconfinement softens EoS
- $\rightarrow$  hybrid stars compacter, lower M<sub>max</sub>

LVC radius constraint GW170817 (Abbott et al., PRL (2018)) GW190425 (Abbott et al., arxiv:2001.01761) NICER mass -radius constraint PSR J0030+0451 (Miller et al., ApJLett. (2019))

![](_page_11_Figure_1.jpeg)

New NICER mass-radius data **PSR J0740+6620** 

(Riley et al., arxiv:2105.06980 Miller et al., arxiv:2105.06979)

#### Hypernuclear EoS out ?!

- $\rightarrow$  stiff hypernuclear matter
- → early onset of deconfinement (M\_onset < 1.5 M\_sun)

#### New quark matter paradigm:

- $\rightarrow$  deconfinement to stiff QM EoS
- $\rightarrow$  hybrid stars larger, higher M<sub>max</sub>

LVC radius constraint GW170817 (Abbott et al., PRL (2018)) NICER mass -radius constraint PSR J0030+0451 (Miller et al., ApJLett. (2019)) PSR J0740+6620 (Miller et al., arxiv:2105.06979)

![](_page_12_Figure_1.jpeg)

Ayriyan, Blaschke, Alvarez-Castillo et al., arXiv:2102.13485v2

GW190814 - Enigma Heaviest NS or Lightest BH ??  $M_1 = 22.2 - 24.3 M_0$  $M_2 = 2.50 - 2.67 M_0$ 

(Abbott et al., ApJL 896:L44 (2020))

![](_page_12_Picture_5.jpeg)

LVC radius constraint GW170817 (Abbott et al., PRL (2018)) NICER mass -radius constraint PSR J0030+0451 (Miller et al., ApJLett. (2019)) PSR J0740+6620 (Miller et al., arxiv:2105.06979)

### NICER radius measurement on PSR J0740+6620

New, large NICER radius for J0740: Riley et al., 2105.06980; Miller et al., 2105.06979

#### Attention:

Above ~1.5 M\_sun hyperons Appear in the center of neutron stars.

Non-hyperonic nuclear EoS (APR) Are no longer applicable for High-mass neutron stars ~2M\_sun ! -

Microscopic EoS need high-density Stiffening of the hypernuclear EoS, e.g., by multi-pomeron interactions.

Yamamoto et al., PRC 96 (2017)

Relativistic mean-field EoS have a Maximal NS radius R\_2.0 ~ 13 km

#### Way out:

early deconfinement to color superconducting, stiff quark matter !

![](_page_13_Figure_10.jpeg)

## Shall the APR EoS be abandoned?

Y. Yamamoto, H. Togashi, T. Tamagawa, T. Furumoto, N. Yasutake, T. Rijken, PRC 96 (2017)

![](_page_14_Figure_2.jpeg)

11

10

12

R [km]

13

14

15

Nuclear saturation properties, when compared to APR.  $\rightarrow$  Neutron star radii R(M< 2 M\_sun) > 12 km !!

The TOV equation

![](_page_15_Figure_2.jpeg)

Fig. 1. Mass–radius diagram for a star made of ordinary matter (thick line) and purely quark stars (thin lines). The numbers at the lines indicate the parameter B.

Fig. 2. Mass-radius diagram of hybrid stars for various values of the parameter B

<sup>1</sup>Yudin et al., Astron. Lett. **40** (2014), 201

The constant-speed-of-sound (CSS) model:

- dimensionless baryochemical potential

$$\hat{\mu}_B = \frac{\mu_B}{\mu_{scale}} = \left(\frac{p+B}{A}\right)^{1/(1+\beta)},$$

pressure

$$p(\mu_B) = A\hat{\mu}_B^{1+\beta} - B,$$

- baryon density

$$n_B(\mu_B) = (1+\beta) \frac{A}{\mu_{scale}} \hat{\mu}_B^{\beta},$$

- energy density

$$\epsilon = B + \beta A \hat{\mu}_B^{1+\beta},$$

-  $p(\epsilon)$  relation:  $\epsilon = \beta p + (1 + \beta)B$ .

<sup>3</sup>Cierniak, Blaschke, Eur.Phys.J.ST **229** (2020) no.22-23, 3663-3673

![](_page_16_Figure_12.jpeg)

The constant-speed-of-sound (CSS) model:

- dimensionless baryochemical potential

$$\hat{\mu}_B = \frac{\mu_B}{\mu_{scale}} = \left(\frac{p+B}{A}\right)^{1/(1+\beta)},$$

pressure

energy

$$p(\mu_B) = A\hat{\mu}_B^{1+\beta} - B,$$

baryon density

$$n_B(\mu_B) = (1+\beta) \frac{A}{\mu_{scale}} \hat{\mu}_B^{\beta},$$
  
- energy density  
$$\epsilon = B + \beta A \hat{\mu}_B^{1+\beta},$$
  
-  $p(\epsilon)$  relation:  $\epsilon = \beta p + (1+\beta)B.$ 

![](_page_17_Figure_8.jpeg)

![](_page_17_Figure_9.jpeg)

![](_page_18_Figure_1.jpeg)

 $M_{max} = M_{SP} + 0.208 M_{\odot} - 0.104 M_{onset}$ 

<sup>3</sup>Cierniak, Blaschke, Eur.Phys.J.ST **229** (2020) no.22-23, 3663-3673

![](_page_19_Figure_1.jpeg)

 $M_{max} = M_{SP} + 0.208 M_{\odot} - 0.104 M_{onset}$ 

<sup>3</sup>Cierniak, Blaschke, Eur.Phys.J.ST 229 (2020) no.22-23, 3663-3673

The mixed phase parabolic ansatz:

$$P_M(\mu) = \alpha_2(\mu - \mu_c)^2 + \alpha_1(\mu - \mu_c) + (1 + \Delta_P)P_c,$$

Gibbs condition for phase equilibrium:

$$\begin{aligned} &P_H(\mu_H) = P_M(\mu_H) ,\\ &P_Q(\mu_Q) = P_M(\mu_Q) ,\\ &\frac{\partial^k}{\partial \mu^k} P_H(\mu_H) = \frac{\partial^k}{\partial \mu^k} P_M(\mu_H) ,\\ &\frac{\partial^k}{\partial \mu^k} P_Q(\mu_Q) = \frac{\partial^k}{\partial \mu^k} P_M(\mu_Q) . \end{aligned}$$

Derived parameters 
$$(k = 1)$$
:

$$\alpha_1 = \frac{-2\kappa_1 + \kappa_2(\mu_c - \mu_H)}{2(\mu_c - \mu_Q)(\mu_H - \mu_Q)},$$

$$\alpha_2 = \frac{-2\kappa_1 + \kappa_2(\mu_c - \mu_Q)}{2(\mu_c - \mu_H)(\mu_H - \mu_Q)},$$

$$\kappa_1 = n_Q(\mu_c - \mu_Q) - n_H(\mu_c - \mu_H) + P_Q - P_H,$$

 $\kappa_2 = n_Q - n_H.$ 

<sup>4</sup>Abgaryan, et al., Universe **4** (2018), 94

![](_page_20_Figure_11.jpeg)

The mixed phase parabolic ansatz:

$$P_M(\mu) = \alpha_2(\mu - \mu_c)^2 + \alpha_1(\mu - \mu_c) + (1 + \Delta_P)P_c,$$

Gibbs condition for phase equilibrium:

$$\begin{aligned} &P_H(\mu_H) = P_M(\mu_H) ,\\ &P_Q(\mu_Q) = P_M(\mu_Q) ,\\ &\frac{\partial^k}{\partial \mu^k} P_H(\mu_H) = \frac{\partial^k}{\partial \mu^k} P_M(\mu_H) ,\\ &\frac{\partial^k}{\partial \mu^k} P_Q(\mu_Q) = \frac{\partial^k}{\partial \mu^k} P_M(\mu_Q) . \end{aligned}$$

Derived parameters 
$$(k = 1)$$
:

$$\alpha_1 = \frac{-2\kappa_1 + \kappa_2(\mu_c - \mu_H)}{2(\mu_c - \mu_Q)(\mu_H - \mu_Q)},$$

$$\alpha_2 = \frac{-2\kappa_1 + \kappa_2(\mu_c - \mu_Q)}{2(\mu_c - \mu_H)(\mu_H - \mu_Q)},$$

$$\kappa_1 = n_Q(\mu_c - \mu_Q) - n_H(\mu_c - \mu_H) + P_Q - P_H,$$

 $\kappa_2 = n_Q - n_H.$ 

![](_page_21_Figure_10.jpeg)

![](_page_21_Figure_11.jpeg)

Invariance w.r.t. Maxwell -> mixed phase construction (pasta phases)

![](_page_22_Figure_2.jpeg)

Invariance w.r.t. Maxwell - interpolation construction (soft - stiff transition)

![](_page_23_Figure_2.jpeg)

Special point locations for constant sound speed c

![](_page_24_Figure_2.jpeg)

Special point locations for constant sound speed  $_{\rm C_s}$  ... and constant prefactor A

![](_page_25_Figure_2.jpeg)

![](_page_26_Figure_1.jpeg)

| $c_s^2$ | $M_{ m SP}$               | $R_{\min}$ | $R_{\rm max}$ |
|---------|---------------------------|------------|---------------|
|         | [ <i>M</i> <sub>☉</sub> ] | [km]       | [km]          |
| 0.35    | 1.82                      | -          | -             |
| 0.40    | 2.07                      | 12.18      | 12.29         |
| 0.45    | 2.30                      | 11.84      | 13.41         |
| 0.50    | 2.50                      | 11.56      | 13.91         |
| 0.55    | 2.68                      | 11.30      | 14.20         |
| 0.60    | 2.86                      | 11.05      | 14.45         |
| 0.70    | 3.22                      | 10.67      | 14.67         |
| 1.00    | 4.00                      | 9.95       | 14.84         |

The values of  $c_s^2$ , largest possible  $M_{SP}$  and the radii range  $(R_{min} - R_{max})$  of a 2  $M_{\odot}$ hybrid star.

![](_page_27_Figure_1.jpeg)

| $c_s^2$ | $M_{\rm SP}$              | $R_{\min}$ | $R_{\rm max}$ |
|---------|---------------------------|------------|---------------|
|         | [ <i>M</i> <sub>☉</sub> ] | [km]       | [km]          |
| 0.35    | 1.82                      | -          | -             |
| 0.40    | 2.07                      | 12.18      | 12.29         |
| 0.45    | 2.30                      | 11.84      | 13.41         |
| 0.50    | 2.50                      | 11.56      | 13.91         |
| 0.55    | 2.68                      | 11.30      | 14.20         |
| 0.60    | 2.86                      | 11.05      | 14.45         |
| 0.70    | 3.22                      | 10.67      | 14.67         |
| 1.00    | 4.00                      | 9.95       | 14.84         |

The values of  $c_s^2$ , largest possible  $M_{SP}$  and the radii range  $(R_{min} - R_{max})$  of a 2  $M_{\odot}$ hybrid star. Bold red rows correspond to the nINJL fit from [6].

<sup>6</sup>Antić, Shahrbaf, Blaschke, Grunfeld, arXiV: 2105.00029

### Constant sound speed (CSS) vs. nonlocal NJL model

$$\mathcal{L} = \bar{\psi} \left( -i \not{\!\!\!/} + m_c \right) \psi - \frac{G_S}{2} j_S^f j_S^f - \frac{G_D}{2} [j_D^a]^\dagger j_D^a + \frac{G_V}{2} j_V^\mu j_V^\mu \,, \quad \eta_D = G_D/G_S \text{ and } \eta_V = G_V/G_S$$

Nonlocal currents, formfactor g(z)

$$\begin{split} j_{S}^{f}(x) &= \int d^{4}z g(z) \bar{\psi}(x + \frac{z}{2}) \Gamma^{f} \psi(x - \frac{z}{2}) ,\\ j_{D}^{a}(x) &= \int d^{4}z g(z) \bar{\psi}_{C}(x + \frac{z}{2}) i \gamma_{5} \tau_{2} \lambda^{a} \psi(x - \frac{z}{2}) ,\\ j_{V}^{\mu}(x) &= \int d^{4}z g(z) \bar{\psi}(x + \frac{z}{2}) i \gamma_{\mu} \psi(x - \frac{z}{2}) , \end{split}$$

CSS equation of state

$$P(\mu) = A\left(\frac{\mu}{\mu_x}\right)^{1+\beta} - B,$$

Fitted relationship, see figure  $\rightarrow$   $A = a_1 \eta_D + b_1 \eta_V^2 + c_1$   $c_s^2 = a_2 \eta_D + b_2 \eta_V^2 + c_2$  $B = a_3 \eta_D + b_3 \eta_V^2 + c_3$ ,

![](_page_28_Figure_7.jpeg)

Perfect mapping nINJL  $\rightarrow$  CSS, Antic et al., arxiv:2105.00029

### Constant sound speed (CSS) vs. nonlocal NJL model

"Trains" of special points, when  $\eta_{D}$  and  $\eta_{V}$  are varied systematically (grid)

![](_page_29_Figure_2.jpeg)

### Constant sound speed (CSS) vs. nonlocal NJL model

"Trains" of special points, when  $\eta_{D}$  and  $\eta_{V}$  are varied systematically (grid)

![](_page_30_Figure_2.jpeg)

### Old paradigm: hybrid stars smaller and lighter

Works on Special Point with M. Cierniak: 2012.15785 & 2009.12353; EPJ ST 229, 3663 (2020)

Dense quark plasma in color superconducting phase: nINJL mode

Constant-speed-of-sound (CSS) Equation of state (EoS)

$$p(\mu) = A(\mu/\mu_0)^{1+c_s^{-2}} - B_s$$
$$p = c_s^2 \varepsilon - (1 + c_s^2) B$$

Perfect mapping nINJL  $\rightarrow$  CSS , Antic et al., arxiv:2105.00029

Maxwell construction with (1<sup>st</sup> order phase transition) Relativistic Density Functional EoS "DD2pxy" by S. Typel With density-dependent coupling And excluded volume v=x.y fm^3

![](_page_31_Figure_7.jpeg)

2.6 M\_sun object can by a hybrid neutron star! With early onset of deconfinement and twins! NICER radius measurement on PSR J0740+6620 will put constraints on this too!

### New paradigm: hybrid stars larger and heavier

Work based on Special Point location with M. Cierniak, in preparation

Dense quark plasma in color superconducting phase: nINJL model 2.5

Constant-speed-of-sound (CSS) Equation of state (EoS)

$$p(\mu) = A(\mu/\mu_0)^{1+c_s^{-2}} - B_s$$
$$p = c_s^2 \varepsilon - (1+c_s^2)B$$

Perfect mapping nINJL  $\rightarrow$  CSS , Antic et al., arxiv:2105.00029

Maxwell construction with (1<sup>st</sup> order phase transition) Relativistic Density Functional EoS "DD2-Y-T" by S. Typel With density-dependent coupling

![](_page_32_Figure_7.jpeg)

2.5 M\_sun object can by a hybrid neutron star! With early onset of deconfinement! NICER radius measurement on PSR J0740+6620 best described by hybrid stars!

### CEP in the QCD phase diagram: HIC vs. Astrophysics

![](_page_33_Figure_1.jpeg)

A. Andronic, D. Blaschke, et al., "Hadron production ...", Nucl. Phys. A 837 (2010) 65 - 86

## Binary neutron star merger simulation

S. Blacker & A. Bauswein (GSI Darmstadt), 1.35 M\_sun + 1.35 M\_sun https://www.gsi.de/fileadmin/theorie/simulation-neutron-star-merger.mp4

Population of the QCD phase diagram with mixed phase, 6... 25 ms

![](_page_34_Picture_3.jpeg)

S. Blacker, A. Bauswein, et al., Phys. Rev. D 102 (2020) 123023

## Binary neutron star merger simulation

S. Blacker & A. Bauswein (GSI Darmstadt), 1.35 M\_sun + 1.35 M\_sun https://www.gsi.de/fileadmin/theorie/simulation-neutron-star-merger.mp4

Population of the QCD phase diagram with mixed phase, 6... 25 ms

![](_page_35_Figure_3.jpeg)

### Hybrid star formation in postmerger phase

![](_page_36_Figure_1.jpeg)

### Hybrid star formation in postmerger phase

Strong phase transition in postmerger GW signal, A. Bauswein et al., PRL 122 (2019) 061102; [arxiv:1809.01116]

![](_page_37_Figure_2.jpeg)

**Strong deviation** from  $f_{peak} - R_{1.6}$  relation signals **strong phase transition in** NS merger! Complementarity of  $f_{peak}$  from postmerger with tidal deformability  $\Lambda_{1.35}$  from inspiral phase.

### Hybrid star formation in postmerger phase

Strong PT in postmerger GW signal, S. Blacker et al., arxiv:2006.03789, PRD102 (2020) 123023

![](_page_38_Figure_2.jpeg)

Dominant postmerger frequency  $f_{peak}$  vs. tidal deformability  $\Lambda_{1.35}$  from inspiral phase: Results from hybrid models appear as **outliers** of the grey band (maximal deviation of purely hadronic models from a least squares fit) = signalling a **strong phase transition in** NS !

### GW signal of deconfinement in merger of hybrid stars

Merger of hybrid stars with early phase transition: Bauswein & Blacker, EPJ ST 229 (2020)

![](_page_39_Figure_2.jpeg)

The combination of stiff hadronic EoS (DD2) and string-flip (SF) model allows for early onset of deconfinement in low-mass neutron stars and even third-family solutions (mass twins). For these cases, the event GW170817 could have been a **merger of two hybrid stars**! Also in these cases (red dots in above figure) a **significant deviation** from the grey band of Purely hadronic star mergers without a phase transition is obtained!

### Deconfinement transition as SN explosion mechanism

![](_page_40_Figure_1.jpeg)

T. Fischer, N.-U. Bastian et al., Quark deconfinement as supernova engine of massive blue Supergiant star explosions, Nature Astronomy 2 (2018) 980-986; arxiv:1712.08788

### Population of the QCD Phase Diagram in Mergers & SNe

#### Binary NS merger, 1.35 M\_sun + 1.35 M\_sun

SN explosion, 50 M\_sun

![](_page_41_Figure_3.jpeg)

S. Blacker, A. Bauswein et al., Phys. Rev. D102 (2020) 123023; arxiv:2006.03789 T. Fischer et al., Nat. Astron. 2 (2018) 980; arxiv:1712.08788

## Population of the QCD Phase Diagram

![](_page_42_Figure_1.jpeg)

S. Blacker, A. Bauswein et al., PRD 102 (2020) 123023 arXiv:2006.03789 T. Fischer et al., Nat. Astron. 2 (2018) 980 arXiv:1712.08788 H.W. Barz, B. Friman et al., PRD 40 (1989) 157 GSI Preprint, GSI-89-13

### CEP in the QCD phase diagram: HIC vs. Astrophysics

![](_page_43_Figure_1.jpeg)

A. Andronic, D. Blaschke, et al., "Hadron production ...", Nucl. Phys. A 837 (2010) 65 - 86

### CEP in the QCD phase diagram: HIC vs. Astrophysics

![](_page_44_Figure_1.jpeg)

P. Senger, Phys. Scripta 96 (2021) 054002; and references therein !

#### **NICA Accelerator Complex in Dubna** BM@N: **SPD TDR - 2021** SPD data taking (Detector) started E-cooling MPD Collider - 2022 BM@N (Detector) (Detector) Collider Extracted beam applied research infrastructure- 2022 Nuclotron IIIIIIIIII an Ma NICA Center - 2022 **MPD - 2022** Booster ECal SC Cail Booster - 2020 Nuclotron (c=251,5 m)

Cryostat

GEM

Budget: approx. 500 MUSD

## NICA construction live

![](_page_46_Picture_2.jpeg)

![](_page_47_Figure_1.jpeg)

## ICA Main parameters of accelerator complex

#### Nuclotron

| Parameter                     | SC synchrotron                                                                     |  |  |  |
|-------------------------------|------------------------------------------------------------------------------------|--|--|--|
| particles                     | ∱p, Îd, nuclei (Au, Bi, …)                                                         |  |  |  |
| max. kinetic energy,<br>GeV/u | 10.71 ( <sup>↑</sup> p);  5.35 ( <sup>↑</sup> d)<br><b>3.8</b> ( <mark>Au</mark> ) |  |  |  |
| max. mag. rigidity, Tm        | 38.5                                                                               |  |  |  |
| circumference, m              | 251.52                                                                             |  |  |  |
| vacuum, Torr                  | <b>10</b> -9                                                                       |  |  |  |
| intensity, <b>Au</b> /pulse   | 1 10 <sup>9</sup>                                                                  |  |  |  |
| Booster                       |                                                                                    |  |  |  |
|                               | value                                                                              |  |  |  |
| ion species                   | A/Z <u>≤</u> 3                                                                     |  |  |  |
| max. energy, MeV/u            | 600                                                                                |  |  |  |
| magnetic rigidity, T m        | 1.6 – 25.0                                                                         |  |  |  |
| circumference, m              | 210.96                                                                             |  |  |  |
| vacuum, Tor                   | 10-11                                                                              |  |  |  |
| intensity, <b>Au</b> /p       | 1.5 10 <sup>9</sup>                                                                |  |  |  |

#### The Collider

Design parameters, Stage II

45 T\*m, 11 GeV/u for Au<sup>79+</sup>

| Ring circumference, m                        | 503,04             |
|----------------------------------------------|--------------------|
| Number of bunches                            | 22                 |
| r.m.s. bunch length, m                       | 0,6                |
| β, m                                         | 0,35               |
| Energy in c.m., Gev/u                        | 4-11               |
| <i>r.m.s. ∆p/p,</i> 10 <sup>-3</sup>         | 1,6                |
| IBS growth time, s                           | 1800               |
| Luminosity, cm <sup>-2</sup> s <sup>-1</sup> | 1x10 <sup>27</sup> |

#### Stage I:

- without ECS in Collider, with stochastic cooling
- reduced number of RF
- reduced luminosity

Collision system limited by source. *Now Available: C*(*A*=12), *N*(*A*=14), *Ne*(*A*=20), *Ar*(*A*=40), *Fe*(*A*=56), *Kr*(*A*=78-86), *Xe*(*A*=124-134), *Bi*(*A*=209)

![](_page_49_Picture_1.jpeg)

## **Booster commissioning**

Booster fully assembled in the tunnel Commissioning and test ongoing for beam diagnostics, beam acceleration, electron cooling, power supply, magnets, cryogenics

Experiment with BM@N: Short-Range Correlations (SRC)

![](_page_50_Figure_2.jpeg)

Experiment at BM@N with a 4A GeV C-beam:  ${}^{12}C + p \rightarrow 2p + {}^{10}_{4}Be + p \text{ (pp SRC)}$ 

First fully exclusive measurement in inverse kinematics probing the residual A-2 nuclear system!

M. Patsyuk et al., arXiv:2102.02626 Accepted for publication in **nature physics** 

### Experiment with BM@N: Λ's in C + C, Al, Cu at 4A GeV

![](_page_50_Figure_7.jpeg)

![](_page_51_Picture_1.jpeg)

![](_page_51_Picture_2.jpeg)

## Electromagnetic Calorimeter (ECAL)

read-out: WLS fibers + MAPD

 $\sigma(E)$  better than 5% @ 1 GeV

- Pb+Sc "Shashlyk"
- Segmentation (4x4 cm<sup>2</sup>)

Barrel ECAL = <u>38400</u> ECAL towers (2x25 half-sectors x 6x8 modules/half-sector x 16 towers/module)

So far ~300 modules (16 towers each) = 3 sectors are produced Another 3 sectors are planned to be completed by May 2021 Chinese collaborators will produce 8 sectors by the end of 2021 25% of all modules are produced by JINR (production area in Protvino) 75% produced in China, currently funding is secured for approx. 25%

![](_page_52_Figure_6.jpeg)

 $L \sim 35 \text{ cm} (\sim 14 X_0)$ time resolution ~500 ps

![](_page_52_Figure_8.jpeg)

Projective geometry

## **Electromagnetic probes in ECAL**

![](_page_53_Figure_2.jpeg)

![](_page_54_Picture_1.jpeg)

## Hadroproduction with MPD

- Particle spectra, yields & ratios are sensitive to bulk fireball properties and phase transformations in the medium
- Uniform acceptance and large phase coverage are crucial for precise mapping of the QCD phase diagram
  - ✓ 0-5% central Au+Au at 9 GeV from the PHSD event generator, which implements partonic phase and CSR effects
     ✓ Recent reconstruction chain, combined dE/dx+TOF particle ID, spectra analysis

![](_page_54_Figure_6.jpeg)

- MPD provides large phase-space coverage for identified pions and kaons (> 70% of the full phasespace at 9 GeV)
- Hadron spectra can be measured from p<sub>T</sub>=0.2 to 2.5 GeV/c
- Extrapolation to full p<sub>τ</sub>-range and to the full phase space can be performed exploiting the spectra shapes (see BW fits for p<sub>τ</sub>-spectra and Gaussian for rapidity distributions)

#### Ability to cover full energy range of the "horn" with consistent acceptance

![](_page_54_Figure_11.jpeg)

![](_page_54_Figure_12.jpeg)

## Strange and multi-strange baryons

Stage'1 (TPC+TOF): Au+Au @ 11 GeV, PHSD + MPDRoot reco.

![](_page_55_Figure_3.jpeg)

![](_page_56_Picture_1.jpeg)

## NICA Facility running plan

- Extensive commissioning of Booster accelerator
- Heavy-ion (Fe/Kr/Xe) run of full Booster+Nuclotron setup
- Year 2022:
  - Completion of NICA Collider and transfer lines
- Year 2023:
  - Initial run of NICA with Bi+Bi @ 9.2 AGeV (other energies a second priority)
  - Goal to reach luminosity of 10<sup>25</sup> cm<sup>-2</sup>s<sup>-1</sup>
- Year 2024:
  - Goal to have Au+Au collisions and acceleration in NICA (up to 11 AGeV)
- Beyond 2024:
  - Maximizing luminosity, possibility of collision energy and system size scan

![](_page_56_Figure_14.jpeg)

### 2<sup>nd</sup> CEP in QCD phase diagram: Quark-Hadron Continuity?

![](_page_57_Figure_1.jpeg)

T. Schaefer & F. Wilczek, Phys. Rev. Lett. 82 (1999) 3956

C. Wetterich, Phys. Lett. B 462 (1999) 164

T. Hatsuda, M. Tachibana, T. Yamamoto & G. Baym, Phys. Rev. Lett. 97 (2006) 122001

### 2<sup>nd</sup> or no CEP in QCD phase diagram: Crossover all over ?

![](_page_58_Figure_1.jpeg)

From: T. Kojo, "Delineating the properties of neutron star matter in cold, dense QCD", PoS Lattice2019, 244

### Conclusions

- First observations of binary mergers open new possibilities to constrain properties of the Quark-gluon plasma at low temperatures and high baryon densities. Hybrid EoS are developed that allows to estimate quark plasma parameters in hypermassive (proto-) neutron stars
- GW170817: narrow window of small radii at 1.4 M\_sun (Capano et al.: 10.4< R\_1.4[km] <11.9) strongly suggests an early onset of deconfinement with a critical density n\_c < 2 n\_0 and an onset mass M\_onset < 1.0 M\_sun [Blaschke & Cierniak: 2012.15785]</li>
- GW190814: the lighter object in the externely asymmetric merger with its 2.6 M\_sun can be either the heaviest neutron star or the lightest black hole. The central baryon density in such high-mass hybrid stars reaches 5.3 n\_0. Our EoS allows it to be a hybrid star ...
- NICER radius measurement on PSR J0740+6620 triggers a new paradigm: NS with M> 2M\_sun should have a deconfined quark matter core when R\_2.0 > 13 km !
  - Such a result is similar to the "two families" scenario of Drago & Pagliara, PRD 102 (2020) For the baryon density at the center of a star with 2.1 M\_sun we find n < 5 n\_0, n\_0=0.15 fm^-3.
- Consequences for supernova simulations: A new lower limit for onset of deconfinement?
- Consequences for merger simulations: Check the GW signal for deconfinement !
- Good news for entering a color superconducting quark matter phase at NICA (BMaN, MPD)

## **Backup Slides:**

## Limits of Neutron Star Physics

## GW190814

![](_page_61_Picture_2.jpeg)

What is the limiting Mass of a neutron Star?

Was GW190814 a Merger of a 23-M\_sun Black hole with the

Lightest Black hole

Or

Heaviest Neutron star

at 2.6 M\_sun ??

### GW170817 – a merger of two compact stars

#### **Neutron Star Merger Dynamics**

(General) Relativistic (Very) Heavy-Ion Collisions at ~ 100 MeV/nucleon

![](_page_62_Picture_3.jpeg)

![](_page_62_Picture_4.jpeg)

Inspiral: Gravitational waves, Tidal Effects

t = -8.1 ms

Merger: Disruption, NS oscillations, ejecta and r-process nucleosynthesis Post Merger: GRBs, Afterglows, and Kilonova

## 

#### Symposium @ INT Seattle, March 2018

### Can NICER prove J0740+6620 to be a hybrid star?

![](_page_63_Figure_1.jpeg)

![](_page_63_Figure_2.jpeg)

If radius of PSR J0740+6620 is measured in the dark-green region then it must harbor a core of superconducting quark matter!

### Can NICER prove J0740+6620 to be a hybrid star?

Work with Mateusz Cierniak, arxiv:2009.12353; EPJ ST 229 (2020) 3663 arxiv:2012.15785; AN (2021) accepted

![](_page_64_Figure_2.jpeg)

3.5 (Cierniak, Blaschke) = 1697B = 173.33.0 B = 180.6 $c_{s}^{2} = 0.7$ B = 184.4B = 188.2DD2p40 2.5 MPa GW 190814 MPa+ ⊙ 2.0 ≥ Σ 1.5 0740+6620 NICER J0030+0451 (Miller et al. 1.5 (Bauswein et al.) 🗾 GW 170817 excluded (Annala et al.) 1.0  $c_{e}^{2} = 0.3$ 0.5 8 10 12 14 16 18 6 R [km]

If radius of PSR J0740+6620 is measured at ~10.5 km, then it is also compatible with the hybrid star solution of the hyperon puzzle; M. Shahrbaf et al., J. Phys. G 47 (2020) 115201 If radius of PSR J0740+6620 is measured at 10.2 km with the accuracy of the yellow ellipse, then it must harbor a core of superconducting quark matter!