Real-Time Methods for Critical Dynamics

Speaker: Dominik Schweitzer¹

¹Institut für Theoretische Physik, JLU Giessen

NA7-Hf-QGP | Oct 6, 2021

DFG

- DS, S. Schlichting, L. von Smekal.
 Spectral functions and dynamic critical behavior of relativistic Z₂ theories. NuclPhysB 960 115165, arXiv:2007.03374
- DS, S. Schlichting, L. von Smekal. Critical dynamics of relativistic diffusion. *TBP*, arXiv:2110.01696
- J. V. Roth, DS, L. Sieke, L. von Smekal. Real-time methods for spectral functions. *TBP*

Phase transitions

Phase transitions

- derivative of thermodynamic potential (Ehrenfest)
- $\label{eq:solid} \blacktriangleright \mbox{ solid } \rightarrow \mbox{ liquid } \rightarrow \mbox{ gaseous,} \\ \mbox{ e.g. water, } CO_2$

Figure: Image by Lanju Fotografie (CC0), Typical phase diagram, Maksim (GFDL)

 Continuous transition: thermodynamic potential analytic

- Second order phase transition: discontinuity in second derivatives
 - E.g. in binary mixtures, ferromagnets, ...

Figure: Images by Sorin Gheorghita and Dan Dennis (CC0), Typical phase diagram, Maksim (GFDL)

Critical point - observables

- Competing processes minimize free energy F = U TS
- ► Strong fluctuations \Rightarrow divergent correlation length ξ , scale invariance $\langle \phi(x)\phi(x')\rangle \sim e^{-|x-x'|/\xi}$

Figure:

(1): Critical opalescence of ethane

Dr. Sven Horstmann (CC3.0)

(2): Field configuration at the critical point

Critical point - observables

- Competing processes minimize free energy F = U TS
- Strong fluctuations \Rightarrow divergent correlation length ξ , scale invariance $\langle \phi(x)\phi(x')\rangle \sim e^{-|x-x'|/\xi}$
- ► Observables → power laws with model-dependent amplitudes, universal exponents

$$\langle O(T)\rangle = a |\tau|^{\sigma}, \quad \tau \equiv \frac{T-T_c}{T_c}$$

Figure:

- (1): Critical opalescence of ethane
- Dr. Sven Horstmann (CC3.0)
- (2): Field configuration at the critical point

Critical point - observables

- Competing processes minimize free energy F = U TS
- Strong fluctuations \Rightarrow divergent correlation length ξ , scale invariance $\langle \phi(x)\phi(x')\rangle \sim e^{-|x-x'|/\xi}$
- ► Observables → power laws with model-dependent amplitudes, universal exponents

$$\langle O(T) \rangle = a |\tau|^{\sigma}, \quad \tau \equiv \frac{T - T_c}{T_c}$$

Figure:

(1): Critical opalescence of ethane

Dr. Sven Horstmann (CC3.0)

(2): Field configuration at the critical point

Universality

Microscopic details irrelevant \Rightarrow classical physics

D. Schweitzer

Real-Time methods

Chiral endpoint of QCD

• Universality class of QCD CEP: Z_2 lsing

- chiral $SU(2)_A$ symmetry sponaneously broken
- order parameter $\langle \bar{\psi}\psi \rangle$

Figure: Semi-Quantitatives Phasendiagramm der QCD

Chiral endpoint of QCD

• Universality class of QCD CEP: Z_2 lsing

- chiral $SU(2)_A$ symmetry sponaneously broken
- order parameter $\langle \bar{\psi}\psi \rangle$
- Landau-Ginzburg-Wilson

$$\begin{split} \mathcal{P}[\phi] &\sim e^{-\beta\mathfrak{H}[\phi]},\\ \mathfrak{H}[\phi] &= \frac{1}{2}(\vec{\nabla}\phi)^2 + \frac{m^2}{2}\phi^2 + \frac{\lambda}{4!}\phi^4 - J\phi \end{split}$$

- J = 0: Z_2 symmetry $\phi \to -\phi$
 - $m^2 < 0$: spontaneous symmetry-breaking at $T < T_c$
 - order parameter $M \equiv \langle \phi \rangle$

Figure: Semi-Quantitatives Phasendiagramm der LGW-Theorie

- Observing QCD matter in heavy-ion collisions
 - transient process
 - equilibrium not guaranteed
- \Rightarrow Dynamics relevant for determining the CEP

Figure: Visualization of a relativistic heavy-ion collision (Chun Shen)

Universality

Study dynamics of LGW theory to make predictions about QCD

Non-equilibrium field theory

Von-Neumann equation

$$\partial_t \hat{\rho}(t) = -\mathrm{i} \left[\hat{H}(t), \, \hat{\rho}(t) \right],$$

formally solved by evolution operator

$$\hat{U}_{t,t'} = \mathbb{T} \exp\left(-\mathrm{i} \int_{t'}^t \hat{H}(t) \mathrm{d}t\right), \quad \hat{\rho}(t) = \hat{U}_{t,-\infty} \hat{\rho}(-\infty) \hat{U}_{-\infty,t},$$

Expectation values of observables:

$$\langle \hat{O}(t) \rangle \equiv \frac{\text{Tr}\left\{ \hat{O}\hat{\rho}(t) \right\}}{\text{Tr}\left\{ \hat{\rho}(t) \right\}} = \frac{\text{Tr}\left\{ \hat{U}_{-\infty,t} \hat{O}\hat{U}_{t,-\infty}\hat{\rho}(-\infty) \right\}}{\text{Tr}\left\{ \hat{\rho}(t) \right\}}$$

Von-Neumann equation

$$\partial_t \hat{\rho}(t) = -\mathrm{i} \left[\hat{H}(t), \, \hat{\rho}(t) \right],$$

formally solved by evolution operator

$$\hat{U}_{t,t'} = \mathbb{T} \exp\left(-\mathrm{i} \int_{t'}^t \hat{H}(t) \mathrm{d}t\right), \quad \hat{\rho}(t) = \hat{U}_{t,-\infty} \hat{\rho}(-\infty) \hat{U}_{-\infty,t},$$

Expectation values of observables:

$$\langle \hat{O}(t) \rangle \equiv \frac{\operatorname{Tr}\left\{\hat{O}\hat{\rho}(t)\right\}}{\operatorname{Tr}\left\{\hat{\rho}(t)\right\}} = \frac{\operatorname{Tr}\left\{\hat{U}_{-\infty,\infty}\hat{U}_{\infty,t}\hat{O}\hat{U}_{t,-\infty}\hat{\rho}(-\infty)\right\}}{\operatorname{Tr}\left\{\hat{\rho}(-\infty)\right\}}$$

Closed time path

Closed time path:

$$\langle \hat{O}(t) \rangle = \frac{\text{Tr}\left\{ \hat{U}_{-\infty,\infty} \hat{U}_{\infty,t} \hat{O} \hat{U}_{t,-\infty} \hat{\rho}(-\infty) \right\}}{\text{Tr}\left\{ \hat{\rho}(-\infty) \right\}}$$

- \blacksquare Continue evolution of state ρ up to $t \to \infty$
- Insert hermitian operator \hat{O} at time t on branches
- Generating function: $\hat{H} \rightarrow \hat{H}_V^{\pm} \equiv \hat{H} \pm \hat{O}V(t)$

$$Z[V] \equiv \frac{\operatorname{Tr}\left\{\hat{U}_{\mathcal{C}}[V]\hat{\rho}(-\infty)\right\}}{\operatorname{Tr}\left\{\hat{\rho}(-\infty)\right\}} \quad \Rightarrow \quad \left\langle O(t)\right\rangle = \frac{\mathrm{i}}{2} \left.\frac{\delta Z}{\delta V(t)}\right|_{V\equiv 0}$$

Closed time path

Write partition function as path integral

- Discretize evolution along time contour
- Insert unity in coherent state basis: $\hat{\mathbb{1}} = \int d\left[\bar{\varphi}, \varphi\right] e^{-|\varphi|^2} |\varphi\rangle \langle \varphi|$
- Evaluate infinitesimal evolution operators $\hat{U}_{\pm\delta_t}$

$$Z = \frac{1}{\operatorname{Tr}\left\{\hat{\rho}(t_0)\right\}} \int \prod_{j=1}^{2N} \mathrm{d}\left[\bar{\varphi}_j, \varphi_j\right] \exp\left(\mathrm{i}\sum_{j,j'=1}^{2N} \bar{\varphi}_j G_{jj'}^{-1} \varphi_{j'}\right)$$

Take formal continuum limit

$$Z = \int \mathbf{D} \left[\bar{\varphi}, \varphi \right] e^{\mathrm{i} S\left[\bar{\varphi}, \varphi \right]}, \quad S \left[\bar{\varphi}, \varphi \right] = \int_{\mathcal{C}} \mathrm{d} t \mathrm{d} t' \bar{\varphi}(t) \hat{G}^{-1}(t, t') \varphi(t')$$

$$Z = \int \mathbf{D} \left[\bar{\varphi}, \varphi \right] e^{\mathbf{i} S \left[\bar{\varphi}, \varphi \right]}, \quad S \left[\bar{\varphi}, \varphi \right] = \int_{\mathcal{C}} \mathrm{d}t \mathrm{d}t' \bar{\varphi}(t) \hat{G}^{-1}(t, t') \varphi(t')$$

Rewrite action to get rid of contour integral, split fields into parts evaluated on forward (φ⁺(t)) and backward (φ⁻(t)) branch

$$S\left[\bar{\varphi},\varphi\right] = \int_{-\infty}^{\infty} \mathrm{d}t \mathrm{d}t' \left(\bar{\varphi}^{+}(t) \quad \bar{\varphi}^{-}(t)\right) \hat{G}^{-1}(t,t') \begin{pmatrix} \varphi^{+}(t') \\ \varphi^{-}(t') \end{pmatrix}$$

where

$$\hat{G}(t,t') = \begin{pmatrix} G^{\mathbb{T}}(t,t') & G^{>}(t,t') \\ G^{<}(t,t') & G^{\tilde{\mathbb{T}}}(t,t') \end{pmatrix} = -\mathrm{i} \begin{pmatrix} \langle \varphi^{+}(t)\bar{\varphi}^{+}(t')\rangle & \langle \varphi^{-}(t)\bar{\varphi}^{+}(t')\rangle \\ \langle \varphi^{+}(t)\bar{\varphi}^{-}(t')\rangle & \langle \varphi^{-}(t)\bar{\varphi}^{-}(t')\rangle \end{pmatrix}$$

$$\hat{G}(t,t') = \begin{pmatrix} G^{\mathbb{T}}(t,t') & G^{>}(t,t') \\ G^{<}(t,t') & G^{\tilde{\mathbb{T}}}(t,t') \end{pmatrix} = -\mathbf{i} \begin{pmatrix} \langle \varphi^{+}(t)\bar{\varphi}^{+}(t')\rangle & \langle \varphi^{-}(t)\bar{\varphi}^{+}(t')\rangle \\ \langle \varphi^{+}(t)\bar{\varphi}^{-}(t')\rangle & \langle \varphi^{-}(t)\bar{\varphi}^{-}(t')\rangle \end{pmatrix}$$

Correlators are not linearly independent:

$$G^{\mathbb{T}}(t,t') - G^{>}(t,t') - G^{<}(t,t') + G^{\tilde{\mathbb{T}}}(t,t') = 0$$

⇒ Change of coordinates: Keldysh rotation $\varphi^{c/q} \equiv \frac{1}{\sqrt{2}} \left(\varphi^+ \pm \varphi^- \right)$

$$\Rightarrow \quad \hat{G}(t,t') = \begin{pmatrix} G^{K}(t,t') & G^{R}(t,t') \\ G^{A}(t,t') & 0 \end{pmatrix} = -i \begin{pmatrix} \langle \varphi^{\mathsf{c}}(t)\bar{\varphi}^{\mathsf{c}}(t') \rangle & \langle \varphi^{\mathsf{c}}(t)\bar{\varphi}^{\mathsf{q}}(t') \rangle \\ \langle \varphi^{\mathsf{q}}(t)\bar{\varphi}^{\mathsf{c}}(t') \rangle & \langle \varphi^{\mathsf{q}}(t)\bar{\varphi}^{\mathsf{q}}(t') \rangle \end{pmatrix}$$

Feynman Lagrangian action:
$$S[\phi] = \int_{\mathcal{C}} dt \left[\frac{1}{2} \dot{\phi}^2 - \frac{\omega_0^2}{2} \phi^2 \right] \equiv \int_{\mathcal{C}} dt \left[\frac{1}{2} \dot{\phi}^2 - V(\phi) \right]$$

► Feynman Lagrangian action:
$$S[\phi] = \int_{\mathcal{C}} dt \left[\frac{1}{2}\dot{\phi}^2 - \frac{\omega_0^2}{2}\phi^2\right] \equiv \int_{\mathcal{C}} dt \left[\frac{1}{2}\dot{\phi}^2 - V(\phi)\right]$$

► Keldysh rotation: $S[\phi^{\mathsf{c}}, \phi^{\mathsf{q}}] = \int_{-\infty}^{+\infty} dt \left[-2\phi^{\mathsf{q}}\ddot{\phi^{\mathsf{c}}} - V(\phi^{\mathsf{c}} + \phi) + V(\phi^{\mathsf{c}} - \phi^{\mathsf{q}})\right]$

- Feynman Lagrangian action: $S[\phi] = \int_{\mathcal{C}} dt \left[\frac{1}{2} \dot{\phi}^2 \frac{\omega_0^2}{2} \phi^2 \right] \equiv \int_{\mathcal{C}} dt \left[\frac{1}{2} \dot{\phi}^2 V(\phi) \right]$
- Keldysh rotation: $S[\phi^{\mathsf{c}}, \phi^{\mathsf{q}}] = \int_{-\infty}^{+\infty} \mathrm{d}t \left[-2\phi^{\mathsf{q}} \ddot{\phi^{\mathsf{c}}} V(\phi^{\mathsf{c}} + \phi) + V(\phi^{\mathsf{c}} \phi^{\mathsf{q}}) \right]$
- Matrix representation of Keldysh action for $V(\phi) = \omega_0^2 \phi^2/2$:

$$\left[G_0^{-1}\right]^R = (\mathrm{i}\partial_t + \mathrm{i}\varepsilon)^2 - \omega_0^2$$

- Feynman Lagrangian action: $S[\phi] = \int_{\mathcal{C}} dt \left[\frac{1}{2} \dot{\phi}^2 \frac{\omega_0^2}{2} \phi^2 \right] \equiv \int_{\mathcal{C}} dt \left[\frac{1}{2} \dot{\phi}^2 V(\phi) \right]$
- Keldysh rotation: $S[\phi^{\mathsf{c}}, \phi^{\mathsf{q}}] = \int_{-\infty}^{+\infty} \mathrm{d}t \left[-2\phi^{\mathsf{q}} \ddot{\phi^{\mathsf{c}}} V(\phi^{\mathsf{c}} + \phi) + V(\phi^{\mathsf{c}} \phi^{\mathsf{q}}) \right]$
- Matrix representation of Keldysh action for $V(\phi) = \omega_0^2 \phi^2/2$:

$$\left[G_0^{-1}\right]^A = (\mathrm{i}\partial_t - \mathrm{i}\varepsilon)^2 - \omega_0^2$$

Example: Harmonic Oscillator

Keldysh-rotated propagators:

$$G_0^R(t,t') = -\mathrm{i}\theta(t-t')e^{-\omega_0|t-t'|} \qquad \rightarrow \quad G_0^R(\omega) = \frac{1}{(\omega+\mathrm{i}\varepsilon)^2 - \omega_0^2}$$

Example: Harmonic Oscillator

Keldysh-rotated propagators:

$$G_0^A(t,t') = \mathrm{i}\theta(t'-t)e^{-\omega_0|t'-t|} \longrightarrow G_0^A(\omega) = \frac{1}{(\omega-\mathrm{i}\varepsilon)^2 - \omega_0^2}$$

-1

Keldysh-rotated propagators:

$$G_0^A(t,t') = \mathrm{i}\theta(t'-t)e^{-\omega_0|t'-t|} \longrightarrow G_0^A(\omega) = \frac{1}{(\omega-\mathrm{i}\varepsilon)^2 - \omega_0^2}$$

• G_0^K component in continuous notation is regularization:

$$G_0^K(\omega) = \coth \frac{\beta \omega}{2} \left[G_0^R(\omega) - G_0^A(\omega) \right]$$

in equilibrium, with $\hat{\rho}(-\infty) \sim e^{-\beta \hat{H}} \rightarrow {\rm FDR}$

-1

Keldysh-rotated propagators:

$$G_0^A(t,t') = \mathrm{i}\theta(t'-t)e^{-\omega_0|t'-t|} \longrightarrow G_0^A(\omega) = \frac{1}{(\omega-\mathrm{i}\varepsilon)^2 - \omega_0^2}$$

• G_0^K component in continuous notation is regularization:

$$G_0^K(\omega) = \coth \frac{\beta \omega}{2} \left[G_0^R(\omega) - G_0^A(\omega) \right]$$

in equilibrium, with $\hat{\rho}(-\infty) \sim e^{-\beta \hat{H}} \rightarrow {\rm FDR}$

Causality

Poles of retarded propagator are in the lower half-plane, $(G^R)^\dagger = G^A \text{, and } G^{\tilde{K}} = 0$

Couple bosonic particle in potential to infinitely many harmonic oscillators:

$$S[\phi, \{\varphi_s\}] = S[\phi] + \frac{1}{2} \int \mathrm{d}t \sum_s \left((\vec{\varphi})^T \hat{G}_{0,s}^{-1} \vec{\varphi} + g_s(\vec{\phi})^T \hat{\sigma}_1 \vec{\varphi} \right)$$

where $\vec{\varphi} = (\varphi^{\mathsf{c}}, \, \varphi^{\mathsf{q}})^T$

Couple bosonic particle in potential to infinitely many harmonic oscillators:

$$S[\phi, \{\varphi_s\}] = S[\phi] + \frac{1}{2} \int \mathrm{d}t \sum_s \left((\vec{\varphi})^T \hat{G}_{0,s}^{-1} \vec{\varphi} + g_s(\vec{\phi})^T \hat{\sigma}_1 \vec{\varphi} \right)$$

where $\vec{\varphi} = (\varphi^{\mathsf{c}},\,\varphi^{\mathsf{q}})^T$

▶ Bath oscillators enter the action quadratically ⇒ can be integrated out by completing the square

$$\Delta \hat{G}^{-1}(t - t') = -\hat{\sigma}_1 \left[\sum_{s} g_s^2 \hat{G}_{0,s}(t - t') \right] \hat{\sigma}_1$$

Couple bosonic particle in potential to infinitely many harmonic oscillators:

$$S[\phi, \{\varphi_s\}] = S[\phi] + \frac{1}{2} \int \mathrm{d}t \sum_s \left((\vec{\varphi})^T \hat{G}_{0,s}^{-1} \vec{\varphi} + g_s(\vec{\phi})^T \hat{\sigma}_1 \vec{\varphi} \right)$$

where $\vec{\varphi} = (\varphi^{\mathsf{c}},\,\varphi^{\mathsf{q}})^T$

▶ Bath oscillators enter the action quadratically ⇒ can be integrated out by completing the square

$$\Delta \hat{G}^{-1}(t-t') = -\hat{\sigma}_1 \left[\sum_{s} g_s^2 \hat{G}_{0,s}(t-t') \right] \hat{\sigma}_1$$

▶ Introduce bath spectral density $J(\omega) = \pi \sum (g_s^2/\omega_s) \delta(\omega - \omega_s)$ to get for propagators

$$[\Delta G^{-1}(\omega)]^{R(A)} = \int_0^\infty \frac{\mathrm{d}\omega'}{2\pi} \frac{2\omega' J(\omega')}{(\omega')^2 - (\omega \pm \mathrm{i}\varepsilon)^2}$$

► Assume ohmic bath $J_{\Lambda}(\omega) = 2\gamma\omega\Theta(\Lambda - \omega)$ to arrive at Caldeira-Leggett model:

$$\begin{split} [\Delta G^{-1}(\omega)]^{R(A)} &= \operatorname{const} \pm 2\mathrm{i}\gamma\omega \quad \to \quad \mp 2\gamma\delta(t-t')\partial_{t'} \\ [\Delta G^{-1}(\omega)]^K &= 4\mathrm{i}\gamma\omega \coth\frac{\beta\omega}{2} \quad \to \quad 4\mathrm{i}\gamma \left[(2T+C)\delta(t-t') - \frac{\pi T^2}{\sinh^2\left(\pi T\left(t-t'\right)\right)} \right] \end{split}$$

Keldysh action:

$$\begin{split} S[\phi^{\mathsf{c}},\phi^{\mathsf{q}}] &= \int_{-\infty}^{+\infty} \mathrm{d}t \Bigg[-2\phi^{\mathsf{q}} \left(\partial_t^2 + \gamma \partial_t\right) \phi^{\mathsf{c}} - V(\phi^{\mathsf{c}} + \phi^{\mathsf{q}}) + V(\phi^{\mathsf{c}} - \phi^{\mathsf{q}}) \\ &+ 2\mathrm{i}\gamma \left(2T(\phi^{\mathsf{q}})^2 + \frac{\pi T^2}{2} \int_{-\infty}^{+\infty} \mathrm{d}t' \frac{\left(\phi^{\mathsf{q}}(t) - \phi^{\mathsf{q}}(t')\right)^2}{\sinh^2\left(\pi T(t - t')\right)} \right) \Bigg] \end{split}$$

• Go to limit $\hbar \to 0$: Expand around $\phi^{q} = 0$, keeping track of units

$$S[\phi^{\mathsf{c}}, \phi^{\mathsf{q}}] = \int_{-\infty}^{\infty} \mathrm{d}t \left[-2\phi^{\mathsf{q}} \left(\ddot{\phi}^{\mathsf{c}} + \gamma \dot{\phi}^{\mathsf{c}} + V'(\phi^{\mathsf{c}}) \right) + 4\mathrm{i}\gamma T(\phi^{\mathsf{q}})^{2} \right]$$
(1)

• Go to limit $\hbar \to 0$: Expand around $\phi^{q} = 0$, keeping track of units

$$S[\phi^{\mathsf{c}},\phi^{\mathsf{q}}] = \int_{-\infty}^{\infty} \mathrm{d}t \left[-2\phi^{\mathsf{q}} \left(\ddot{\phi}^{\mathsf{c}} + \gamma \dot{\phi}^{\mathsf{c}} + V'(\phi^{\mathsf{c}}) \right) + 4\mathrm{i}\gamma T(\phi^{\mathsf{q}})^{2} \right]$$
(1)

 Eliminate term ~ (φ^q)² via Hubbard-Stratonovich transformation, introducing Gaussian random force ξ(t)

$$e^{-4\gamma T \int \mathrm{d}t(\phi^{\mathsf{q}})^2} = \int \mathcal{D}[\xi(t)] e^{-\int \mathrm{d}t \left[\frac{1}{4\gamma T}\xi^2 - 2\mathrm{i}\xi\phi^{\mathsf{q}}\right]} \tag{2}$$

• Go to limit $\hbar \to 0$: Expand around $\phi^{q} = 0$, keeping track of units

$$S[\phi^{\mathsf{c}},\phi^{\mathsf{q}}] = \int_{-\infty}^{\infty} \mathrm{d}t \left[-2\phi^{\mathsf{q}} \left(\ddot{\phi}^{\mathsf{c}} + \gamma \dot{\phi}^{\mathsf{c}} + V'(\phi^{\mathsf{c}}) \right) + 4\mathrm{i}\gamma T(\phi^{\mathsf{q}})^{2} \right]$$
(1)

 Eliminate term ~ (φ^q)² via Hubbard-Stratonovich transformation, introducing Gaussian random force ξ(t)

$$e^{-4\gamma T \int \mathrm{d}t(\phi^{\mathsf{q}})^2} = \int \mathcal{D}[\xi(t)] e^{-\int \mathrm{d}t \left[\frac{1}{4\gamma T}\xi^2 - 2\mathrm{i}\xi\phi^{\mathsf{q}}\right]} \tag{2}$$

▶ Resulting action is linear in $\phi^q \Rightarrow$ Keldysh PI becomes delta functional

$$\int \mathcal{D}[\phi^{\mathsf{c}},\phi^{\mathsf{q}},\xi] e^{-\frac{1}{4\gamma T}\int \mathrm{d}t\xi^{2}} e^{-2\mathrm{i}\int \mathrm{d}t\phi^{\mathsf{q}}\left(\ddot{\phi}^{\mathsf{c}}+\gamma\dot{\phi}^{\mathsf{c}}+V'(\phi^{\mathsf{c}})-\xi\right)} \tag{3}$$

▶ Go to limit $\hbar \rightarrow 0$: Expand around $\phi^q = 0$, keeping track of units

$$S[\phi^{\mathsf{c}},\phi^{\mathsf{q}}] = \int_{-\infty}^{\infty} \mathrm{d}t \left[-2\phi^{\mathsf{q}} \left(\ddot{\phi}^{\mathsf{c}} + \gamma \dot{\phi}^{\mathsf{c}} + V'(\phi^{\mathsf{c}}) \right) + 4\mathrm{i}\gamma T(\phi^{\mathsf{q}})^{2} \right]$$
(1)

 Eliminate term ~ (φ^q)² via Hubbard-Stratonovich transformation, introducing Gaussian random force ξ(t)

$$e^{-4\gamma T \int \mathrm{d}t(\phi^{\mathsf{q}})^2} = \int \mathcal{D}[\xi(t)] e^{-\int \mathrm{d}t \left[\frac{1}{4\gamma T}\xi^2 - 2\mathrm{i}\xi\phi^{\mathsf{q}}\right]} \tag{2}$$

▶ Resulting action is linear in $\phi^{q} \Rightarrow$ Keldysh PI becomes delta functional

$$\int \mathcal{D}[\phi^{\mathsf{c}},\xi] e^{-\frac{1}{4\gamma T}\int \mathrm{d}t\xi^2} \delta \underbrace{\left(\ddot{\phi^{\mathsf{c}}} + \gamma\dot{\phi^{\mathsf{c}}} + V'(\phi^{\mathsf{c}}) - \xi\right)}_{\text{Langevin equation}}$$

(3)

 \blacktriangleright Keldysh-rotating $V(\phi) \propto \phi^4$ potential term yields

$$V(\phi^{\mathsf{c}} + \phi^{\mathsf{q}}) - V(\phi^{\mathsf{c}} - \phi^{\mathsf{q}}) \propto \underbrace{\phi^{\mathsf{q}}(\phi^{\mathsf{c}})^{3}}_{\text{class. vertex}} + \underbrace{(\phi^{\mathsf{q}})^{3}\phi^{\mathsf{c}}}_{\text{quant. vertex}}$$

 \blacktriangleright Keldysh-rotating $V(\phi) \propto \phi^4$ potential term yields

$$V(\phi^{\mathsf{c}} + \phi^{\mathsf{q}}) - V(\phi^{\mathsf{c}} - \phi^{\mathsf{q}}) \propto \underbrace{\phi^{\mathsf{q}}(\phi^{\mathsf{c}})^{3}}_{\text{class, vertex}} + \underbrace{(\phi^{\mathsf{q}})^{3}\phi^{\mathsf{c}}}_{\text{quant. vertex}}$$

Quantum vertex dropped for classical approximation

- Self-interacting scalar field
- Equation of motion

$$\ddot{\phi}(\vec{x},t) = -rac{\delta\mathfrak{H}}{\delta\phi(\vec{x},t)}$$

Hamiltonian dynamics

(

- Self-interacting scalar field
- Equation of motion A

$$\begin{split} \ddot{\phi}(\vec{x},t) &= -\frac{\delta\mathfrak{H}}{\delta\phi(\vec{x},t)} - \gamma\dot{\phi} + \sqrt{2\gamma T}\eta(\vec{x},t) \\ \langle \eta(\vec{x},t) \rangle &= 0, \quad \langle \eta(\vec{x}',t')\eta(\vec{x},t) \rangle = \delta^d(\vec{x}'-\vec{x})\delta(t'-t) \end{split}$$

- Langevin-dynamics
- energy conservation in the limit $\gamma \rightarrow 0$ (Model C)

- Self-interacting scalar field
- Equation of motion B

$$\begin{split} \ddot{\phi}(\vec{x},t) &= \mu \vec{\nabla}^2 \frac{\delta \mathfrak{H}}{\delta \phi(\vec{x},t)} - \gamma \dot{\phi} + \sqrt{2\gamma \mu T} \eta(\vec{x},t) \\ \langle \eta(\vec{x},t) \rangle &= 0, \quad \langle \eta(\vec{x}',t') \eta(\vec{x},t) \rangle = -\vec{\nabla}^2 \delta^d(\vec{x}'-\vec{x}) \delta(t'-t) \end{split}$$

- diffusive dynamics
- energy conservation in the limit $\gamma \rightarrow 0$ (Model D)
- order parameter $M = \int d^d x \phi(\vec{x}, t)$ conserved
- Models A-D have same equilibrium state

- Self-interacting scalar field
- Equation of motion B

$$\begin{split} \ddot{\phi}(\vec{x},t) &= \mu \vec{\nabla}^2 \frac{\delta \mathfrak{H}}{\delta \phi(\vec{x},t)} - \gamma \dot{\phi} + \sqrt{2\gamma \mu T} \eta(\vec{x},t) \\ \langle \eta(\vec{x},t) \rangle &= 0, \quad \langle \eta(\vec{x}',t') \eta(\vec{x},t) \rangle = -\vec{\nabla}^2 \delta^d(\vec{x}'-\vec{x}) \delta(t'-t) \end{split}$$

- diffusive dynamics
- energy conservation in the limit $\gamma \rightarrow 0$ (Model D)
- order parameter $M = \int \mathrm{d}^d x \phi(\vec{x},t)$ conserved
- Models A-D have same equilibrium state

Discretization on spatial lattice

Integrate ordinary differential equations via leapfrog method

D. Schweitzer

Results

WARNING

The following footage may potentially trigger seizures for people with photosensitive epilepsy.

(4)

Decomposition of the two-point correlation function

$$G^{\mathbb{T}}(t,t') = F(t,t') - \frac{i}{2}\rho(t,t')\operatorname{sgn}(t-t')$$

• Spectral function ρ , statistical two-point function F

- ► Thermal equilibrium: $F(\omega) = (n_B(\omega) + 1/2)\rho(\omega)$ (FDR)
- ▶ Classical approximation: $n_B(\omega) + 1/2 \rightarrow T/\omega$
- ⇒ Obtain spectral function from derivative of statististical function

$$\rho(t-t') = -\frac{1}{T}\partial_t F(t-t')$$

Spectral function – results

CRC-TR 211

- Non-critical spectral functions dominated by quasi-particle structure
- Breit-Wigner with dispersion

$$\omega_c^2 = \begin{cases} m^2(T) + p^2, & {\rm A/C} \\ \mu p^2(m^2(T) + p^2), & {\rm B/D} \end{cases}$$

Figure: Spectral functions of Model C (left) and Model D (right)

Spectral function - results

- Non-critical spectral functions dominated by quasi-particle structure
- Breit-Wigner with dispersion

$$\omega_c^2 = \begin{cases} m^2(T) + p^2, & \mathsf{A/C} \\ \mu p^2(m^2(T) + p^2), & \mathsf{B/D} \end{cases}$$

Langevin coupling γ increases decay width

$$\Gamma_p(\gamma) = \Gamma_p(0) + \gamma$$

Figure: Spectral functions of Model A (left) and Model B (right)

WARNING

The following footage may potentially trigger seizures for people with photosensitive epilepsy.

Figure: Divergent correlation time at the critical point

 Large clusters show less movement ("critical slowing-down")

Quantified via multi-time correlation function

 $\langle \phi(t)\phi(t')\rangle \sim e^{-|t'-t|/\xi_t}$

• Correlation time \equiv critical time scale ξ_t

- Correlation time diverges at critical point ⇒ scale invariance extends to time direction
- New critical exponent z

$$\xi_t \sim \xi^z$$

Critical dynamics - universality classes

- New universality classes depending on properties of dynamics
 - + conserved charges
 - + dynamic mode couplings
- LGW with equation of motion A/B: Model A-D
- ▶ QCD: Model H, more complex

ModelABCD
$$H$$
-- \checkmark \checkmark $\langle \phi \rangle$ - \checkmark - \checkmark z $2-c\eta$ $4-\eta$ $2+\alpha/\nu$ $(4-\eta)$

Table: Dynamic universality classes ("Models") afterHohenberg and Halperin

Figure: Spectral functions of Model A (upper) and Model C (lower)

- Slow dynamics \rightarrow large IR contribution
- ► Correlation time diverges ⇒ scale-invariance

$$\begin{split} \rho(\omega,p,\tau) &= s^{2-\eta} \rho(s^z \omega, sp, s^{1/\nu} \tau) \\ \Rightarrow \quad \rho(\omega,p,0) &= p^{-(2-\eta)} \rho(\omega/p^z,1,0) \end{split}$$

▶ IR part described by *universal* function $\rho(x, 1, 0)$

 $d = 3, \gamma = 1.0, z = 3.96$

Figure: Spectral functions of Model B (upper) and Model D (lower)

Modified dispersion relations

 $\omega_p^2 \sim p^{4-\eta}, \quad \Gamma_p(\gamma) \sim p^{z_{\Gamma}} + \gamma$

⇒ Extract scaling function analytically

$$\frac{p^2 \omega \Gamma}{(\omega^2 - \omega_p^2)^2 + \Gamma_p^2 \omega^2} \xrightarrow{\omega \ll \Gamma_p} p^{-(2-\eta)} \rho_0 P(\omega/p^z, 1, 0)$$
$$P(x, 1, 0) = \frac{1}{x + \frac{1}{x}}$$

WARNING

The following footage may potentially trigger seizures for people with photosensitive epilepsy.

- Probing the QCD phase diagram with HIC
- \rightarrow System evolves in real time
 - 1. maximum compression
 - 2. expansive cooling
 - 3. phase transition
 - 4. freeze-out
- \Rightarrow "Trajectories" in phase diagram
 - ξ_t diverges at critical point
 - system cannot equilibrate
 - Emergence of non-equilibrium effects

Figure: Semi-quantitative phase diagram of QCD

Non-equilibrium dynamics

Probing the QCD phase diagram with HIC

- \rightarrow System evolves in real time
 - 1. maximum compression
 - 2. expansive cooling
 - 3. phase transition
 - 4. freeze-out
- \Rightarrow "Trajectories" in phase diagram
 - ξ_t diverges at critical point
 - system cannot equilibrate
 - Emergence of non-equilibrium effects

Figure: Qualitative LGW phase diagram

Non-equilibrium dynamics – critical quench

- Bachelor thesis by C. Kummer
- System thermalizes at T_0 , J_0 for times t < 0
- Instant quench to $T = T_c$, J = 0 at t = 0
- Scale-invariance, new exponent re-scales $m_0 \equiv M(t=0)$ \Rightarrow

$$M(t,\tau,m_0) = s^{-\beta/\nu} M(s^{-z}t,s^{1/\nu}\tau,s^{x_0}m_0)$$

$$\Rightarrow \quad M(t,\tau=0,m_0) = t^{-\beta/\nu z} M(1,0,t^{x_0/z}m_0)$$

• Small
$$t^{x_0/z}m_0 \Rightarrow$$
 initial slip $M(t) \sim t^{\theta'}$
• Large $t^{x_0/z}m_0 \Rightarrow$ aging $M(t) \sim t^{-\beta/\nu z}$

 $\langle M(t) \rangle$

 $M(t)\rangle$

Non-equilibrium dynamics - universal functions

Thermalization after critical quench described by universal function

$$t^{\beta/\nu z} M(t, \tau = 0, m_0) = M(1, 0, t^{x_0/z} m_0)$$

Universal functions

Exact description of M(t)

Non-equilibrium dynamics - universal functions

Thermalization after critical quench described by

 $t^{1/z}\xi(t,\tau=0,m_0) = \xi(1,0,t^{x_0/z}m_0)$

Universal functions

Exact description of $\xi_t(t)$

universal function

NA7-Hf-QGP | Oct 6, 2021 28 / 30

Conclusion & Outlook

- Investigate non-equilibrium behaviour of QFTs with Schwinger-Keldysh formalism
- Classical-statistical simulations powerful tool for critical dynamics
 - Spectral functions
 - Dynamic critical exponent
 - Non-equilibrium scaling
 - Energy-momentum tensor

Outlook

- More classical-statistical simulations
 - Different dynamical models, leading to Model H
 - More non-equilibrium effects
 - realistic trajectories
 - dynamic phase ordering
 - Kibble-Zurek mechanism
- Alternatives to classical-statistical simulations:
 - Corrections to classical limit,
 e.g. Gaussian states (see Talk by Leon)
 - FRG on the Keldysh contour (see Talk by Johannes)

Outlook

- More classical-statistical simulations
 - Different dynamical models, leading to Model H
 - More non-equilibrium effects
 - realistic trajectories
 - dynamic phase ordering
 - Kibble-Zurek mechanism
- Alternatives to classical-statistical simulations:
 - Corrections to classical limit,
 - e.g. Gaussian states (see Talk by Leon)
 - FRG on the Keldysh contour (see Talk by Johannes)

Thank you for your attention!

Appendix

▶ Scale-invariant free energy: invariant under rescalings $x \rightarrow x/s$

$$F_{\mathsf{sing}}(\tau, J, \ldots) = s^d F_{\mathsf{sing}}\left(s^{y_1}\tau, s^{y_2}J, \ldots\right)$$

with reduced temperature $\tau \equiv \frac{T-T_c}{T_c}$, external field J

▶ Scale-invariant free energy: invariant under rescalings $x \rightarrow x/s$

$$F_{\rm sing}(\tau, J, \ldots) = s^d F_{\rm sing}\left(s^{y_1}\tau, s^{y_2}J, \ldots\right)$$

with reduced temperature $\tau \equiv \frac{T-T_c}{T_c}$, external field J

Derivatives of scale-invariant free energy are scale invariant, e.g. magnetization M with external field J

$$\begin{split} M(\tau,J) &= \frac{\partial}{\partial J} F(\tau,J) = s^{y_2 - d} M(s^{y_1}\tau,s^{y_2}J) \\ \Rightarrow M(\tau,J=0) &= |\tau|^{\frac{d-y_2}{y_1}} M(\operatorname{sgn}(\tau),0) \end{split}$$

Covariant representation

Model A Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\nu} \phi \partial^{\nu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4$$

Equation of motion

$$0 = \partial_{\nu}\partial^{\nu}\phi + m^{2}\phi - \frac{\lambda}{6}\phi$$

Covariant representation

Model A Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\nu} \phi \partial^{\nu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4$$

Dissipative equation of motion

$$0 = \partial_{\nu}\partial^{\nu}\phi + m^{2}\phi - \frac{\lambda}{6}\phi + \gamma u_{\nu}\partial^{\nu}\phi - \sqrt{2\gamma T}\eta$$

with heat-bath velocity u^{ν}

Model B Lagrangian

$$\mathcal{L} = \frac{\mu}{2} \nabla_{\nu} K \nabla^{\nu} K + K D_{\tau} \phi + \frac{1}{2} \nabla_{\nu} \phi \nabla^{\nu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4$$

Equations of motion

$$0 = D_{\tau}K + \partial_{\nu}\nabla^{\nu}\phi + V'(\phi)$$
$$0 = D_{\tau}\phi - \mu\partial_{\nu}\nabla^{\nu}K$$

with heat-bath velocity u^{ν} , longitudinal derivative $D_{\tau} = u_{\nu}\partial^{\nu} \rightarrow \partial_t$, transversal projector $\Delta^{\nu\lambda} = g^{\nu\lambda} - u^{\nu}u^{\lambda}$, transversal derivative $\nabla^{\nu} = \Delta^{\nu\lambda}\partial_{\lambda} \rightarrow -\vec{\nabla}$

Model B Lagrangian

$$\mathcal{L} = \frac{\mu}{2} \nabla_{\nu} K \nabla^{\nu} K + K D_{\tau} \phi + \frac{1}{2} \nabla_{\nu} \phi \nabla^{\nu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{4!} \phi^4$$

Dissipative equations of motion

$$0 = D_{\tau}K + \partial_{\nu}\nabla^{\nu}\phi + V'(\phi)$$

$$0 = D_{\tau}\phi - \mu\partial_{\nu}\nabla^{\nu}K + \gamma D_{\tau}\phi - \sqrt{2\gamma T}\eta$$

with heat-bath velocity u^{ν} , longitudinal derivative $D_{\tau} = u_{\nu}\partial^{\nu} \rightarrow \partial_t$, transversal projector $\Delta^{\nu\lambda} = g^{\nu\lambda} - u^{\nu}u^{\lambda}$, transversal derivative $\nabla^{\nu} = \Delta^{\nu\lambda}\partial_{\lambda} \rightarrow -\vec{\nabla}$