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The ‚holy grail‘ of heavy-ion physics:

• Study of the phase 

transition from hadronic to 

partonic matter –

Quark-Gluon-Plasma

• Search for the critical point

• Study of the in-medium properties of hadrons 

at high baryon density and temperature

The phase diagram of QCD

• Search for signatures of 

chiral symmetry restoration
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Dynamical description of heavy-ion collisions

The goal:

to study the properties of strongly interacting matter under 

extreme conditions from a microscopic point of view

Realization: 

to develop a dynamical microscopic transport approach

1) applicable for strongly interacting systems,

which includes:

2) phase transition from hadronic matter to QGP

3) chiral symmetry restoration
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History: Semi-classical BUU equation
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Boltzmann-Uehling-Uhlenbeck equation (non-relativistic formulation)

- propagation of particles in the self-generated Hartree-Fock mean-field 

potential U(r,t) with an on-shell collision term:
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is the single particle phase-space distribution function 

- probability to find the particle at position r with momentum p at time t

❑ self-generated Hartree-Fock mean-field potential:

Ludwig Boltzmann

collision term: 

elastic and 

inelastic reactions
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Probability including Pauli blocking of fermions:
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Gain term: 3+4→1+2 Loss term: 1+2→3+4

❑ Collision term for 1+2→3+4 (let‘s consider fermions) :
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History: developments of relativistic transport models
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Low energy HIC High energy HIC 

‘Relativistic Vlasov-Uehling-Uhlenbeck model for heavy-ion collisions’

Che-Ming Ko, Qi Li,  Phys.Rev. C37 (1988) 2270

‘Covariant Boltzmann-Uehling-Uhlenbeck approach for heavy-ion collisions’

Bernhard Blaettel, Volker Koch, Wolfgang Cassing, Ulrich Mosel, Phys.Rev. C38 (1988) 1767

‘Relativistic BUU approach with momentum dependent mean fields’

T. Maruyama, B. Blaettel, W. Cassing, A. Lang, U. Mosel, K. Weber, Phys.Lett. B297 (1992) 228

‘The Relativistic Landau-Vlasov method in heavy ion collisions’

C. Fuchs, H.H. Wolter,  Nucl.Phys. A589 (1995) 732

. . .
Alternative: QMD (cf. talks by J. Aichelin, M. Bleicher)

Non-relativistic semi-classical BUU 

Relativistic transport models
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Covariant transport equation
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where

❑ Covariant relativistic on-shell BUU equation :

from many-body theory by connected Green functions in phase-space + 

mean-field limit for the propagation part (VUU)
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Gain term

3+4→1+2

Loss term

1+2→3+4
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W. Ehehalt, W. Cassing, Nucl. Phys. A 602 (1996) 449

- effective mass

- effective momentum

m*(x,p) = m + Us (x,p)

 (x,p) = p – U (x,p)

Us (x,p), U (x,p) are scalar and vector part of particle self-energies

(    −m*2) – mass-shell constraint



Dynamical transport model: collision terms

❑ BUU eq. for different particles of type i=1,…n
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Drift term=Vlasov eq. collision term

➔ coupled set of BUU equations for different particles of type i=1,…n
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Elementary hadronic interactions

Low energy collisions:

▪ binary 2→2 and

2→3(4)  reactions 

▪ 1→2 : formation and 

decay of baryonic and 

mesonic resonances  

BB → B´B´

BB → B´B´m

mB → m´B´

mB → B´

mm → m´m´

mm → m´ . . .

Baryons: 

B = p, n, (1232), 

N(1440), N(1535), ...

Mesons: 

M = , , , , , ...

+p

pp

High energy collisions:

(above s1/2~2.5 GeV)

Inclusive particle 

production:

BB→X , mB→X, mm→X

X =many particles

described by 

string formation and decay

(string = excited color 

singlet states q-qq, q-qbar)

using LUND string model

Consider all possible interactions – eleastic and inelastic collisions - for the sytem 

of (N,R,m), where N-nucleons, R- resonances, m-mesons, and resonance decays
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• very good description of particle production in pp, pA, pA, AA reactions

• unique description of nuclear dynamics from low (~100 MeV) to 

ultrarelativistic (>20 TeV) energies

Hadron-String-Dynamics – a microscopic 

transport model for heavy-ion reactions
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From weakly to strongly interacting systems

Many-body theory:

Strong interaction ➔ large width ➔ broad spectral function ➔ quantum object

▪ How to describe the dynamics of broad 

strongly interacting quantum states in 

transport theory?

Barcelona / 

Valencia 

group

(1783)N-1

and 

(1830)N-1

exitations

❑ semi-classical BUU

❑ generalized transport equations based 

on Kadanoff-Baym dynamics

first order gradient expansion 

of quantum Kadanoff-Baym 

equations

In-medium effects (on hadronic or partonic levels!) = changes of particle properties 

in  the hot and dense medium 

Examples: hadronic medium - vector mesons, strange mesons

QGP – dressing of partons 

Semi-classical on-shell BUU: applies for 

small collisional width, i.e.  for a weakly 

interacting systems of particles
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Dynamical description of strongly interacting systems

❑ Quantum field theory ➔

Kadanoff-Baym dynamics for resummed single-particle Green functions S<

(1962)

Leo Kadanoff Gordon Baym
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Green functions S< / self-energies  :

operatororderingtime)anti()T(T

)fermions/bosons(1

ca −−−

=

Integration over the intermediate spacetime

1st application for spacially homodeneous system with deformed Fermi sphere:

P. Danielewicz, Ann. Phys. 152, 305 (1984); … H.S. Köhler, Phys. Rev. 51, 3232 (1995); … 
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From Kadanoff-Baym equations to 

generalized transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym 

equations and separation into the real and imaginary parts one gets:

Backflow term incorporates the off-shell behavior in the particle propagation

! vanishes in the quasiparticle limit AXP→ (p2-M2) 

❑ Spectral function:

– ‚width‘ of spectral function

= reaction rate of particle (at space-time position X)

4-dimentional generalizaton of the Poisson-bracket:

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

❑ GTE: Propagation of the Green‘s function iS<
XP=AXPNXP , which carries 

information not only on the number of particles (NXP), but also on their properties,

interactions and correlations (via AXP)

 0

ret

XPXP p2Im =−=

drift term Vlasov term collision term = ‚gain‘ - ‚loss‘ termbackflow term

Generalized transport equations (GTE):




c
=

❑ Life time

Botermans-Malfliet (1990)
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General testparticle off-shell equations of motion

❑ Employ testparticle Ansatz for the real valued quantity i S<
XP  

insert in generalized transport equations and determine equations of motion !

➔ Generalized testparticle Cassing-Juchem off-shell equations of motion 

for the time-like particles:

with

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

Note: the common factor 1/(1-C(i)) can be absorbed in an ‚eigentime‘ of particle (i) !



14

Collision term in off-shell transport models

Collision term for reaction 1+2->3+4:

with

The trace over particles 2,3,4 reads explicitly

for fermions for bosons

The transport approach and the particle spectral functions are 

fully determined once the in-medium transition amplitudes G

are known in their off-shell dependence!

additional integration

‚loss‘ term‚gain‘ term



In-medium transition rates: G-matrix approach

Need to know in-medium transition amplitudes G and their off-shell

dependence

Coupled channel G-matrix approach

Transition probability :

with G(p,,T)  - G-matrix from the solution of coupled-channel equations:

G

•Baryons: Pauli blocking 

and potential dressing

• Meson selfenergy and 

spectral function

▪

For strangeness: 

D. Cabrera, L. Tolos, J. Aichelin, E.B., PRC C90 (2014) 055207;  W. Cassing, L. Tolos, E.B., A. Ramos, NPA727 (2003) 59; 

T. Song et al., PRC 103, 044901 (2021) 15

(1405)



Off-shell vs. on-shell transport dynamics

0
10

20
30

40

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

0
10

20
30

40

0.2

0.4

0.6

0.8

1.0

0.0
0.2

0.4
0.6

0.8
1.0

0
10

20
30

40

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

0
10

20
30

40

0.2

0.4

0.6

0.8

1.0

1.2

0.0
0.2

0.4
0.6

0.8
1.0

C+C,   2.0 A GeV,   b=1 fm

dropp. mass + coll. broad.

d
N

/d
M

 [
a
.u

.]

M [GeV/c
2 ]

time [fm/c]

 -meson 

off-shell
 -meson 

on-shell

d
N

/d
M

 [
a
.u

.]

M [GeV/c
2 ]

time [fm/c]

 -meson 

on-shell

d
N

/d
M

 [
a
.u

.]

M [GeV/c
2 ]

time [fm/c]

 -meson 

off-shell

d
N

/d
M

 [
a
.u

.]

M [GeV/c
2 ]

time [fm/c]

The off-shell spectral function 

becomes on-shell in the vacuum 

dynamically by propagation 

through the medium!

Time evolution of the mass distribution of  and  mesons for central C+C 

collisions (b=1 fm) at 2 A GeV for dropping mass + collisional broadening scenario

E.L.B. &W. Cassing, NPA 807 (2008) 214

On-shell BUU:

low mass  and  mesons live  

forever (and shine ‚fake‘ dileptons)!

On-shell Off-shell

16

In-medium
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Advantages of Kadanoff-Baym dynamics vs Boltzmann
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Boltzmann equations

❑ propagate two-point Green functions 

G<(x,p)→A(x,p)*N(x,p)
in 8 dimensions

❑ propagate phase space 

distribution function f(𝒓,𝒑,t) 
in 6+1 dimensions

❑ works well for small coupling

=  weakly interacting system,

➔ on-shell approach

❑ Applicable for strong coupling = strongly interaction system

❑ Includes memory effects (time integration) and off-shell transitions in 

collision term

❑ Dynamically generates a broad spectral function for strong coupling

❑ KB can be solved exactly for model cases as Ф4 – theory

❑ KB can be solved in 1st order gradient expansion in terms of generalized 

transport equations (in test particle ansatz) for realistic systems of HICs

Kadanoff-Baym equations:

p=(𝒑𝟎,𝒑)x=(t,𝒓)

❑ G< carries information not only on the 

occupation number NXP , but also on 

the particle properties, interactions and 

correlations via spectral function AXP
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Detailed balance on the level of 2→n: 

treatment of multi-particle collisions in transport approaches

W. Cassing,  NPA 700 (2002) 618

Generalized off-shell collision integral for n → m reactions:

is Pauli-blocking or Bose-enhancement factors; 

=1 for bosons and =-1 for fermions

is a transition matrix element squared
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Multi-meson fusion in heavy-ion reactions
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W. Cassing,  NPA 700 (2002) 618

E. Seifert, W. Cassing, PRC 97 (2018) 024913, (2018) 044907Multi-meson fusion reactions

m1+m2+...+mn→ B+Bbar

m=,,,..  B=p,,,,,  (>2000 channels)

❑ important for anti-proton, anti-, 

anti-, anti-  dynamics !
2→3

→ approximate equilibrium of annihilation and recreation



Goal: microscopic transport description of 

the partonic and hadronic phase

Problems:
❑ How to model a QGP phase in line with lQCD data?

❑ How to solve the hadronization problem?

Ways to go:

‚Hybrid‘ models:

▪ QGP phase: hydro with QGP EoS

▪ hadronic freeze-out: after burner -

hadron-string transport model

➔ Hybrid-UrQMD

▪ microscopic transport description of the partonic 

and hadronic phase in terms of strongly interacting 

dynamical quasi-particles and off-shell hadrons

➔ PHSD

pQCD based  models:

▪ QGP phase: pQCD cascade

▪ hadronization: quark coalescence 

➔ AMPT, HIJING, BAMPS
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Degrees-of-freedom of QGP 

❖ lQCD gives QGP EoS at finite B

pQCD:

❑ weakly interacting system

❑ massless quarks and gluons

Thermal QCD

= QCD at high parton densities: 

❑ strongly interacting system

❑ massive quarks and gluons   

➔ quasiparticles 

=   effective degrees-of-freedom

! need to be interpreted in 

terms of degrees-of-freedom

Non-perturbative QCD      pQCD

21
Theory ➔ HIC experiments

❖ How to learn about degrees-of-

freedom of QGP? 
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DQPM describes QCD properties in terms of ‚resummed‘ single-particle Green‘s 

functions (propagators) – in the sense of a two-particle irreducible (2PI) approach:

A. Peshier, W. Cassing, PRL 94 (2005) 172301;   Cassing,  NPA 791 (2007) 365: NPA 793 (2007)  

Dynamical QuasiParticle Model (DQPM) - Basic ideas:

▪ the resummed properties are specified by complex (retarded) self-energies:

- the real part of self-energies (Σq, Π) describes a dynamically generated mass (Mq,Mg);

- the imaginary part describes the interaction width of partons (gq, gg)

- Spectral functions : 

(scalar approximation)

gluon self-energy: Π=Mg
2-i2ggω & quark self-energy: Σq=Mq

2-i2gqω

gluon propagator: Δ-1 =P2 - Π & quark propagator Sq
-1 = P2 - Σq

ret

g

ret

qq ImA~ImSA ~,

❑ Entropy density of interacting bosons and fermions in the quasiparticle limit (2PI)

gluons

quarks

antiquarks

Q
G

P
 

(G. Baym 1998): 
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The Dynamical QuasiParticle Model (DQPM)

❑ Basic idea: interacting quasi-particles: massive quarks and gluons (g, q, qbar)

with Lorentzian spectral functions :

)g,q,qi( =

lQCD: pure glue

( ) (T)ω4(T)Mpω

(T)ω4
)T,(ρ

2

i
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22
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+−−
= 

➔ Quasi-particle properties:

large width and mass for gluons and quarks

TC=158 MeV

eC=0.5 GeV/fm3

DQPM: Peshier, Cassing, PRL 94 (2005) 172301;

Cassing,  NPA 791 (2007) 365: NPA 793 (2007)  

•DQPM provides mean-fields (1PI) for gluons and 

quarks as well as effective 2-body interactions (2PI)

•DQPM gives transition rates for the formation of hadrons 

→ PHSD

❑ Modeling of the quark/gluon masses and widths → HTL limit at high T 

with 3 model parameters – fited to lattice QCD data
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Parton-Hadron-String-Dynamics (PHSD)

PHSD is a non-equilibrium microscopic transport approach for the description of 

strongly-interacting hadronic and partonic matter created in heavy-ion collisions 

W. Cassing, E. Bratkovskaya,  PRC 78 (2008) 034919; NPA831 (2009) 215; W. Cassing, EPJ  ST 168 (2009) 3

Initial A+A 

collision

Hadronic phase

Hadronization

❑ Initial A+A collisions :

N+N → string formation → decay to pre-hadrons + leading hadrons 

Partonic phase

❑ Formation of QGP stage if local e > ecritical :

dissolution of pre-hadrons→ partons

❑ Partonic phase - QGP:

QGP is described by the Dynamical QuasiParticle Model (DQPM) 

matched to reproduce lattice QCD EoS for finite T and B (crossover)

- Degrees-of-freedom: strongly interacting quasiparticles: 

massive quarks and gluons (g,q,qbar) with sizeable collisional 

widths in a self-generated mean-field potential 

- Interactions: (quasi-)elastic and inelastic collisions of partons

❑ Hadronization to colorless off-shell mesons and baryons:

Dynamics: based on the solution of generalized off-shell transport equations derived 

from Kadanoff-Baym many-body theory

❑ Hadronic phase: hadron-hadron interactions – off-shell HSD

Strict 4-momentum and quantum number conservation
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Stages of a collision in PHSD

Traces of non-equilibrium dynamics in relativistic heavy-ion collisions
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Non-equilibrium dynamics: description of A+A with PHSD
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❑ PHSD: highlights

❑ PHSD provides a good description of ‚bulk‘ observables (y-, pT-distributions, flow 

coefficients vn, …) from SIS to LHC

PRC 85 (2012) 011902; JPG42 (2015) 055106
arXiv:1801.07557
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