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ELSM

Vector and axial vector meson Extended Polyakov Linear Sigma Model.
Effective model to study the phase diagram of strongly interacting matter at finite T and p.
Phys. Rev. D 93, no. 11, 114014 (2016)

e Extended: Vector and Axial vector nonets (besides to Scalar and Pseudoscalar)
Isospin symmetric case: 16 mesonic degrees of freedom.

e Polyakov: Polyakov loop variables give 2 order parameters ®, ®.

e Linear Sigma Model: "simple" quark-meson model
The mesonic Lagrangian Ly, build up from the fields

L= (VI + A Ta, RE=D (VI = ATy, M=) (Sa+iPa)Ta,

a

with terms up to fourth order, taking care of the symmetry properties.



ELSM

Ly contains the dynamical, the symmetry breaking,
and the meson-meson interaction terms.

e U(1)4 anomaly and explicit breaking of the chiral symmetry.
« Each meson-meson terms upto 4th order that are allowed by the chiral symmetry.

Constituent quarks (Ny = 2 + 1) in Yukawa Lagrangian

Ly =9 (iv"0u — gr(S — ivsP) — guy" (Vi + v5AL)) ¥ (1)

In the 2016 version gy = 0 was used.
= No (axial) vector-fermion interaction was taken into account.
= These masses contains only tree-level contributions.

SSB with nonzero vev. for scalar-isoscalar sector ¢n, ¢s.
= my,q =L oN, ms = %(bs fermion masses in Ly.

Mean field level effective potential — the meson masses and the thermodynamics
are calculated from this.



ELSM

Thermodynamics: Mean field level effective potential:
e Classical potential.

e Fermionic one-loop correction with vanishing fluctuating mesonic fields.

Y (iv" 0y — diag(mu, mg, ms)) ¢
Functional integration over the fermionic fields.
The momentum integrals are renoralized.

e Polyakov loop potential.
T, pg) = Uy +tr/ log (iSO_1> +U(®, D) (2)
K

Field equations (FE):

o N o 1)9)

T 99 (3)
0P 9P Ipn  Ops

Parametrization of the model at T'= 0, pu = 0 with = 30 physical quantities.



ELSM
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The curvature meson masses are calculated from the grand potential: Mgb =

e Tree level: S-V and P-A mixing in the quadratic (after SSB) part of the Lagrangian

eg. < Sq Kugiédn/sdap Vi



ELSM

820
Opadpy

The curvature meson masses are calculated from the grand potential: Mgb =

e Tree level: S-V and P-A mixing in the quadratic (after SSB) part of the Lagrangian

eg. < Sq Kugiédn/sdap Vi

« The usual way: shift the (axial) vectors: VFE S5V 4+ aKH*S,
« For the scalars: Sa(Z2K26,, + mib)sb
« A "wavefunction renormalization factor" 72 mics

for the (pseudo)scalar fields eg.: K§ T (m2, —02(on+V265)2)

= The S/P masses get an extra factor M2 — Z2M2,
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The curvature meson masses are calculated from the grand potential: Mgb =

e Tree level: S-V and P-A mixing in the quadratic (after SSB) part of the Lagrangian

eg. < Sq Kugiédn/sdap Vi

« The usual way: shift the (axial) vectors: VFE S5V 4+ aKH*S,
« For the scalars: Sa(Z2K26,, + mib)sb
« A "wavefunction renormalization factor" 72 mics

for the (pseudo)scalar fields eg.: K§ T (m2, —02(on+V265)2)

= The S/P masses get an extra factor M2 — Z2M2,

e Fermionic one-loop correction: can be calculated from the fermionic determinant.

Tree-level + ferm. vacuum + ferm. matter Mgb = mib + Amib + 6m3b



ELSM IMPROVEMENTS

— Including (axial) vector-fermion interaction, i.e. setting gy # 0

Ly = (iv"0u — gr(S — ivsP) — gv " (Vi + 15 4u)) ¢ (4)
From the fermionic one-loop self-energy corrections come to the (axial) vector masses.

Phys. Rev. D 104, 056013 (2021)
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— Including one-loop mesonic contribution into the effective potential via ring
resummation. (The fermion determinant expanded to 2nd order in the mesonic fields
and Gaussian integral performed.)

Co— i -
U(¢) =Ucgy + tr/K log <zSO 1) _itr/}( log (ZD(Hlx/),ab(K) - H(Hu),ab(K)) (5)

iD~1(K) the tree-level inverse propagator and II(K) the fermionic one-loop SE.



ELSM IMPROVEMENTS

— Including (axial) vector-fermion interaction, i.e. setting gy # 0

Ly = (iv"0u — gr(S —ivsP) — gy " (Vi + 75 4,)) ¥ (4)
From the fermionic one-loop self-energy corrections come to the (axial) vector masses.
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— Including one-loop mesonic contribution into the effective potential via ring
resummation. (The fermion determinant expanded to 2nd order in the mesonic fields
and Gaussian integral performed.)

U(¢) = Uey +tr/Klog (z‘sgl) —%tr/}(log (mdy)’ab(m - H(W),ab(K)) (5)

For the fermionic one-loop self-energy one may use the local approximation II(K = 0)
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From the fermionic one-loop self-energy corrections come to the (axial) vector masses.
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— Including one-loop mesonic contribution into the effective potential via ring
resummation. (The fermion determinant expanded to 2nd order in the mesonic fields
and Gaussian integral performed.)

e i o
U($) = Uey + tr/K log (zso 1) —atr/K log (mdy),ab(K) - ku),ab(K)) (5)
For the fermionic one-loop self-energy one may use the local approximation II(K = 0)

It can be easily seen that the fermionic contribution to the curvature masses can be
obtained as the self-energy at vanishing external momentum II(K = 0).
= One needs the self-energy.



(AXIAL) VECTOR SELF-ENERGY

Generally one has

Mo e Mo g
0 (Q) = iNesxck /Ktr[FX?S(K)FXé’S(K—Q)] (6)

where the trace goes over flavor and Dirac space, too, S = diag (Su,Sq,Ss), sx = £1
for S, P and V, A while cx = —igs, —gs, —igy, —igv and I'x = 1,75, yu, Yu7s for
X = S, P,V, A respectively. With mg, = my 4/ X $n/s

, m (£ mamy — K2+ K - Q) + 2KFKY — KFQY — QK"
/e ) :ZQNCQ‘Q// g (& mamy )

(7)
(K2 —m2)((K — Q)2 —mj)
e At T'= 0 only the vacuum self-energy contributes, that has to be renormalized
= Dimensional regularization
e At T # 0 the matter part (with statistical function) also gives contribution
d3k
= At finite temperature: Wick rotation, Matsubara frequencies, / — ZTZ/ @n)?
K o s



PROJECTOR DECOMPOSITION OF IT4i-(Q)

Single reference vector at T' = 0: Q* = 4-longitudonal and 4-transversal projectors:

%%
P =g PR =g P ®)
The vacuum contribution can be written up as
H%VC(Q) = HVaC,L(Q)Pfy + Hvac,T(Q)Pf}LV (9)

We need only the vanishing external momentum case.



PROJECTOR DECOMPOSITION OF IT4i-(Q)

Single reference vector at T' = 0: Q* = 4-longitudonal and 4-transversal projectors:

%%
P =g PR =g P ®)
The vacuum contribution can be written up as
Hﬁ;C(Q) = HVaC,L(Q)Pfy + Hvac,T(Q)Pf}LV (9)

We need only the vanishing external momentum case.

e For the vector self-energy containing two fermion propagators with the same mass
in the loop integral one can see that: Q,II*Y(Q) = 0 and II*¥(0) = 0 (as in QED)

Hvac,L/T(O) =0 (10)

Renormalization method that can reproduce this = Dimensional regularization

e For the axial vector self-energy and vector self-energy with two different fermion
propagators in the loop integral

Hvac,L(O) = 1_Iva.C,T(O) = H?/gc(o) = _H\II;C(O) 7£ 0 (11)

]



(PROJECTOR) DECOMPOSITION OF II*” AT T # 0

There is another reference vector: 4-velocity of the thermal bath u, (with u? = 1).
Lorentz covariant quantities: w = Q - u, p = Vw2 — Q2.

We use u# = (1,0), thus, w = g0, p =|q|.

New operators (uf, = ut — (Q - u)Q*/Q?):

P, P = VUL g prv _ppr, ome = Qv QTuy Q7ur (12)
uz ’ (Q-u)? —@Q?
Hence, Q)= > T (QPL +Tc(Q)CH.
z=I[,t,L
CH¥ is not a projector, e.g.:
C*=-P - Py, C-P=P,-C,C-PL=P-C (13)

M. Le Bellac, Thermal Field Theory, (1996)
Buchmuller, Helbig and Walliser, Nucl. Phys. B 407, 387-411 (1993)



(PROJECTOR) DECOMPOSITION OF II# AT T # 0

We need only the vanishing external momentum case.

To get the curvature mass one need lim lim in this order.
q—0gp—0

Lniget0,q) = 0

44
7%**(0,q) = oo (0,@), IF*(0,q) = *%H?}at(oyﬂﬂ, IE*(0,q) = — al

Thus, T/4/1,(0) = Tlvac(0) + ¢, (0)



(PROJECTOR) DECOMPOSITION OF II*” AT T # 0

We need only the vanishing external momentum case.

To get the curvature mass one need lim lim in this order.
q—0gp—0

Lniget0,q) = 0

44
7%**(0,q) = oo (0,@), IF*(0,q) = *%H?}at(oyﬂﬂ, IE*(0,q) = — al

Thus, T1;/1/7,(0) = Tlyac(0) + TI2¢ ) (0)
e Vector SE with two fermion propagators with equal masses

3
pe*0) =0,  I"(0) =TIgH(0),  TIP**(0) = —EH’{}“(O) [ =0 for ELSM]

e Axial vector SE and vector SE with two different fermion propagators

I (0) = ~TPH0), TP (0) = T (0)



MODES FROM GAUSSIAN APPROXIMATION

Mixing in the Gaussian approximation

Contribution of the self-energy at vanishing external momentum

iD™HK) —iG L (K) = iD7(K) — TI(0)

1 1 S (14)
D (K) —iG! | (K) = Dy (K) + ,,(0)

For V/A:
igl;cl,uy(K) = MEPLfV(K) + Zz:l,t (MZQ - KQ)P;LEV(K)v Mz/l/t =m? + HL/l/t(O)



MODES FROM GAUSSIAN APPROXIMATION

Mixing in the Gaussian approximation

Contribution of the self-energy at vanishing external momentum

iD™HK) —iG L (K) = iD7(K) — TI(0)

—1 a1 1 (14)
D (K) —iG! | (K) = Dy (K) + ,,(0)

For V/A
lgloc HV(K) MEPLfV(K)+Zz:l,t (MZQ_K2)P;LEV(K)7 Mz/l/t :m2+HL/l/t(0)

Specially in the scalar-vector 4 — 5 sector:
det MSVA% = — (M2 55— c25) (K2 — M3,) (K2 — MP2,) (K2 — M255)°, 1414142 modes

where MZ, = 72 ,,(m 29 4+ 1l 0) with 22, = M2 55/ (M3 55— 35).

5]



CURVATURE MASSES

e (Pseudo)scalar curvature masses

Tree-level T=0 T#0
m2 — M2 = m2 + Ivac (0) + Hmat(o)

Already calculated by Schaefer and Wagner and part of the latest version ELSM.
Momentum has to be kept in the determinant for the (axial) vectors because those
couple to the momentum to form a Lorentz scalar.

Phys. Rev. D 79 , 014018 (2009)
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e (Axial) vector curvature masses

Tree-level Fermionic correction

2 _ 02 _ 2 =0 2 _ g2 — 2
mT =m7 =mp Mvac - Mvac,L/T - mL/T +Hvac,L/T(0)

T+0
> ME e =m3 e+ L10(0)



CURVATURE MASSES

e (Pseudo)scalar curvature masses

Tree-level T=0 T#0
m2 — M2 = m2 + Ivac (0) + Hmat(o)

Already calculated by Schaefer and Wagner and part of the latest version ELSM.
Momentum has to be kept in the determinant for the (axial) vectors because those
couple to the momentum to form a Lorentz scalar.

Phys. Rev. D 79 , 014018 (2009)

e (Axial) vector curvature masses

Tree-level Fermionic correction

2 _ 02 _ 2 =0 2 _ g2 — 2
mT =m7 =mp Mvac - Mvac,L/T - mL/T +Hvac,L/T(0)

T+0
> ME e =m3 e+ L10(0)

Thus, both T" and L get the same vacuum correction and at 7" # 0 the 4-transversal
splits to 3-transversal + 3-longitudinal, and each modes (L, [,t) gets separate matter
correction. In ELSM Il (0) = IT¢(0) # II;(0).
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SUMMARY AND OUTLOOK

e There is a mixing between the (pseudo)scalars and (axial) vectors at tree-level.

e The one-loop fermionic self-energy of the (axial) vectors can be calculated
with the usual technics.

e One has to decompose the (axial) vector self-energy the find the physical modes
for which the masses has to be calculated.

e In the Gaussian approximation the mode decomposition and the reduction
of the (pseudo)scalar — (axial) vector naturally appear.

e The T-dependence of the curvature masses of various modes was investigated.

e Using the effective potential in Eq. (5) we can (and plan to) investigate
the thermodynamics of the ELSM including fermion and meson
one-loop corrections and ring resummation with gy # 0.

15 / 15



THANK YOU!



MODES FROM GAUSSIAN APPROXIMATION

Classical level mixing
SL = —Liky [dign (AP = PLAG) + fige (VS + SV [ o, ik =0,....8
Specially for S — V in the 4 — 5 sector
15'4 (K2 - mi;l(s))gz; - %‘75” (g‘“’(K2 . mg‘s(v)) — K'K")VE — %V5“054K“54 + %§4C45KVV5V
The usual way to handle the mixing: shift the (axial) vectors: V — V! + aK*S;
%&(Kz M2V — 2y /miY) — m2)g, — %V;((gul/K? ~KHEY) — g m2 V)T

To get the canonical K2 — m? form for the scalars one defines a "wave function
renormalization" for the scalars with Sy — Z Kt S4 with Z = mK*i/( Toxt — %)

Thus one will get: 154 (K2 — 22 *imil(S)) S



MODES FROM GAUSSIAN APPROXIMATION

Classical level mixing
1. P 5 T G & .
6[:(3;1&(1:7%1K#|: zgk(A P’LA])+fz]k(‘/zusj+sz‘/‘jﬂ):|¢k7 /L7J7k:07"'»8

Specially for S —V in the 4 — 5 sector ~ (with a new way)

_ 1 .
55V — %{(&,V;)Mﬁi (S4)+(55’VM)M45* (:95)} M = <P44 (K) ' 1{(11/045 >

vy iKueas =D, 44(K)
The propagators: zD44/55 =K? - mi;l(s) and zDuV a4/55 = m2 Pl 4+ (m2,, — K?)P],
In the Gaussian approximation one has the determinant:
det My, =iDy ! (K) det (iD,,; 44 (K) + ici;Daa(K)K* Pyl
=— (Mm% —cis) (K° — mi*i) (K2 —m2., 1) 3 1+1+3 modes
_ 2,(8)
where m?{ai = Zf(gim44 with Z2 Kt = mK*i/( et —c2).



MODES FROM GAUSSIAN APPROXIMATION

Classical level mixing
1. - = = ~u G Ry .
sraved — 7%11(“[ i (AL Py = PA) + Jign (VS5 + 5V} [ én, iriik=0,....8

Specially for S — V in the 4 — 5 sector ~ (with a new way)

17,5 S S D (K) —iK,c
sv _ = 14 45 4 o 45x% [ 95 45 44 vC45
i = 2 {(347 V5 )MMU ( )JF(SS’V )M (V4V) :|7 MW’ a <iKHC45 7i,D;u1,44(K)

2,(8
The propagators: 2D44/55 =K?— m44( ) and lD;w 44/55 =

In the Gaussian approximation one has the determinant:

K*iPL +( K*i_KQ)PT

det M3, =iDy! (K) det (iD,, )

v, 1K)+ i0315D44(K)K2P;fu)

- (mK*i — C45) (K2 — mK*i) (1& mi,*i)g, 14+1+3 modes

In the eff. potential: [}, log Det(iD~!(K) 4 I1(0)) = [} log const + [} log S + 3 [} log Vi



MODES FROM GAUSSIAN APPROXIMATION

Classical level mixing
1. - = = G & o o
sraved — f%m,l[ ik (A8P; — B AS) + fin (VIS; + Sivf‘)]% i, k=0,...,8
Specially for S — V in the 4 — 5 sector ~ (with a new way)

T & 3 D LK) —tKycas
sV _ 45 (Sa 45+ (25 . =
0L%s = 2 {(347‘/5”)1\/[#” ( )JF(SS’VM)M (V4V) } Muw = <i;(4“c45 D14 (K)

2,(S
The propagators: 2D44/55 =K? - m44( ) and zDuV a4/55 = m2 Pl 4+ (m2 . — K?)P],

In the Gaussian approximation one has the determinant:

det M3, =iDy} (K) det (iD,) 4, (K) + icisDaa(K)K>PL,)

4
— (mK*i — c45) (K2 — mK*i) (A2 ""?{*i)gv 14143 modes
In the eff. potential: [ log Det(iD~!(K) 4 I1(0)) = + [ log S +3 [, log Vi

In dimensional regularization one can get rid of the constant.



ONE-LOOP FERMIONIC SELF-ENERGY

Backup frame The expansion of the fermionic functional determinant in powers of some
generic mesonic field (in Ny = 1)

Us(¢, @) =Trlog (iS; " — g)

=Trlog (isfl) - Z %UD [ H /d4~’vi o(@:)Sf (@i Tit1) ,
i=1

n=1 Tp41=T1

(15)

with iSf_l =id — my, inverse tree-level fermion propagator, and Tr is the functional trace.
In Ny =2+ 1:
Us (¢, ) :i/ log Det ['yg (iv" Ky + 1diag(mu, mg, ms) — gr (LS*A* — iy5 P*A%)
K (16)
— U (VX + 75 ARX)

Second field derivative of U (¢, ) taken at vanishing mesonic fields gives the self-energy.



ONE-LOOP FERMIONIC SELF-ENERGY

Backup frame The expansion of the fermionic functional determinant in powers of some
generic mesonic field (in Ny = 1)

Us(¢, @) =Trlog (iS; " — g)

=Trlog (iSfl) - Z %trp [ H /d4~’vi o(:)Sy(wi Tit1) ,
i=1

n=1 Tp41=T1

(15)

with iSf_l =id — my, inverse tree-level fermion propagator, and Tr is the functional trace.
In Ny =2+ 1:
Us (¢, ) :i/ log Det [70 (iv" Ky + 1diag(mu, mg, ms) — gp (LS*A* — iy5 PA%)
K (16)
— U (VX 475 ARX)

(Alternative for masses: brut force derivation of the determinant of a 12 x 12 matrix.)
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