Sub Threshold Charm and the properties of dense QCD matter

Jan Steinheimer

With: Marcus Bleicher, Anton Motornenko, Thorben Finke

Thanks to the organizers for inviting me

Questions for this talk:

- How to combine the study of charm quarks production (one topic of workshop)
- With Baryon stopping (another topic)
- And the QCD/nuclear matter equation of state?
- And the goal of CBM@FAIR anyway.
 - Charm Sub-threshold

The CBM problem

- CBM claims reaction rates up to 10 MHz.
- Even if we assume much less... 1 Million events per second is a lot
- Most observables will have very low statistical error within hours of operation.
- Good argument to look for exotic object.
- What else to do with all that event-rate?

There are some interesting questions for low beam energy charm physics

LECTURE NOTES IN PHYSICS 814

The CBM Physics Book

Compressed Baryonic Matter in Laboratory Experiments

🖄 Springer

Charm at high baryon densities

- Study properties of charmed hadrons in dense nuclear matter.
- Study hadronic charm rescattering.
- Study charm in cold nuclear matter.
- Big part of CBM program. ~ 90 pages in CBM physics book.
- $\bullet~$ But that was SIS300 $\rightarrow~$ predictions only down to threshold.

Few data available above threshold.

Process	Energy [GeV]
$N + N \rightarrow N + N + J/\psi$	4.973
$N + N \to N + \Lambda_c + \overline{D}$	5.096
$N + N \to N + N + D + \overline{D}$	5.611

Table: Threshold center-of-mass energies, as implemented in UrQMD, for different charm production processes. N refers to any ground state nucleon.

Charm at high baryon densities

• But that was SIS300 \rightarrow predictions only down to threshold.

How does particle production work at SIS18/100?

• I do not consider "thermal production" as a valid microscopic mechanism.

The old receipe

- Strangeness is cooked.
- $\bullet~$ Idea most of particle production toward equilibration may go through secondary M+B reactions.
- \bullet Long equilibration times for hadronic matter \rightarrow signal for quark matter.
- Can this picture be uphold in light of new measurements?

P. Koch, B. Muller and J. Rafelski, Phys. Rept. 142, 167 (1986).

Microscopic models

Fixed to data where available. Otherwise fixed Matrix element + phase space.

0+0

┉╘╒╴ᡛ_ᡂ

5

√s_{NN} [GeV]

PDG elasti

PDG total UrQMD total elastic inelastic

double resonance

3

string

If resonance excitation and decay are governed mainly by the available energy and momentum for B+B, does that help in equilibration of hadron yields?

Run UrQMD for SIS18 energies and fit FINAL particle yields at different time steps:

- J. Steinheimer, M. Lorenz, F. Becattini, R. Stock and M. Bleicher, Phys. Rev. C 93, no. 6, 064908 (2016).
- A. Motornenko, J. Steinheimer, V. Vovchenko, R. Stock and H. Stoecker, [arXiv:2104.06036 [hep-ph]].

- Light hadron production is fast and then tries to saturate
 Strange hadrons are produced mainly in 'high' energy collisions and just remain.
- Can we do a time dependent thermal fit?
- Does it look thermal?

Thermal fit to UrQMD at SIS18

- Thermal fit works but gets two degenerate minima. (As in the data!)
- Fit quality is very good even early on: Apparent equilibrium
- Pseudo-trajectories can be extracted
- The rapid excitation and decay of very heavy (baryonic-)states mimics equilibration and is the main process of particle production.

So how can we accumulate enough energy to go above the threshold

- Let us compare the available energy per collision $\sqrt{s} m_N$, for two different centralities.
- Central system more rescatterings, peripheral system less rescatterings
- Already less then two rescatterings create a tail of high mass states with enough energy.

Works for strange hadrons....

• Sub threshold phi production well described.

- Qualitative behavior nicely reproduced
- Predicted maximum at 1.25 A GeV
- High energies: too low due to string production
- HADES results for 1.23 A GeV.

• Same for Xi. But here there is less data and no elementary cross section available.

- Ξ[−] yield in Ar+KCl collisions is nicely reproduced
- Consistent with the p+Nb data.
- Indication for Ξ production from non-thermal 'tails' of particle production.
- All other strange particle ratios are also in line with experiment

What are the consequences?

VOLUME 55, NUMBER 24

PHYSICAL REVIEW LETTERS

9 DECEMBER 1985

Subthreshold Kaon Production as a Probe of the Nuclear Equation of State

J. Aichelin and Che Ming Ko^(a)

Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, Tennessee 37831 (Received 11 June 1985; revised manuscript received 23 September 1985)

The production of kaons at subthreshold energies from heavy-ion collisions is sensitive to the nuclear equation of state. In the Boltzmann-Uehling-Uhlenbeck model, the number of produced kaons from central collisions between heavy nuclei at incident energies around 700 MeV/nucleon can vary by a factor of ~ 3 , depending on the equation of state.

In a nutshell:

- Softer EoS leads to higher compression leads to more secondary interaction
- Thus the larger probability to produce particles sub-threshold

FIG. 1. Central density ρ/ρ_0 and total kaon-production probability P_K as functions of the collision time for reactions between Nb nuclei at an incident energy 700A MeV and at an impact parameter b = 0.5 fm.

Potentials in UrQMD

- UrQMD employs a QMD approach with a Skyrme-type mean field potential.
- The force that acts on a nucleon is calculated from the local interaction density which enters the two terms of the Skyrme potential.

$$V_{j}^{\text{Sk2}} = t_{1}\varrho_{j}^{\text{int}}(\boldsymbol{r}_{j}) \qquad V_{j}^{\text{Sk3}} \approx t_{2}3^{-\frac{3}{2}}(\varrho_{j}^{\text{int}})^{2} \to t_{\gamma}(\gamma+1)^{-\frac{3}{2}}(\varrho_{j}^{\text{int}})^{\gamma}$$

- The parameters are partly fixed by demanding stable nuclear matter around saturation density.
- This leaves one free parameter which the controls the "stiffness" of the EoS
- Note, this approach is rather rudimentary as it does not allow for any realistic high density EoS.
- Right now: only proof of concept.

Densities reached at SIS100

- The densities reached in the SIS100 energy range depend strongly on the EoS.
- This will strongly influence whether we see deconfinement or not.
- Here: What is the effect on charm?

Can we make predictions about sub-threshold charm production?

J. Steinheimer, A. Botvina and M. Bleicher, Phys. Rev. C 95, no. 1, 014911 (2017)

- Charm needs some very high mass states
- Basically on the transition to a string
- However, convenient for associated production

N*(1650)	$\Delta(1232)$
N*(1710)	$\Delta(1600)$
N*(1720)	$\Delta(1620)$
N*(1875)	$\Delta(1700)$
N*(1900)	$\Delta(1900)$
N*(1990)	$\Delta(1905)$
N*(2080)	$\Delta(1910)$
N*(2190)	$\Delta(1920)$
N*(2220)	$\Delta(1930)$
N*(2250)	$\Delta(1950)$
N*(2600)	$\Delta(2440)$
N*(2700)	$\Delta(2750)$
N*(3100)	$\Delta(2950)$
N*(3500)	$\Delta(3300)$
N*(3800)	$\Delta(3500)$
N*(4200)	$\Delta(4200)$

We use data from p+p at $\sqrt{s} = 6.7$ GeV to fix the $N^* \rightarrow N + J/\Psi$ branching fraction.

Only 1 parameter

$$\Gamma_{N^* \to NJ\Psi} / \Gamma_{tot} = 5 \cdot 10^{-5}$$

Assumptions

- We assume the associated production of $N^* \rightarrow \Lambda_c + \overline{D}$ to be a factor 20 larger at that beam energy and to contribute about the half of the total charm production.
- $D + \overline{D}$ pair production is also allowed with

$$\Gamma_{N^* \to N+D+\overline{D}} / \Gamma_{tot} = 2 \cdot 10^{-3}$$

No string production

Comparisons to HSD

O. Linnyk, E. L. Bratkovskaya and W. Cassing, Int. J. Mod. Phys. E 17, 1367 (2008)

When applied to central nuclear collisions (min. bias: divide by 5):

$$\begin{split} E_{\rm lab} &= 6 \ {\rm A} \ {\rm GeV} \\ \bullet \ 1 \cdot 10^{-7} \ J/\Psi \ {\rm per \ event.} \\ \bullet \ 5 \cdot 10^{-5} \ \Lambda_c \ {\rm per \ event.} \end{split}$$

 $E_{\rm lab} = 11 \text{ A GeV}$

 yield is about one order of magnitude larger

When applied to central nuclear collisions (min. bias: divide by 5):

$$\begin{split} E_{\text{lab}} &= 6 \text{ A GeV} \\ \bullet \ 6 \cdot 10^{-5} \ \overline{D} \text{ per event.} \\ \bullet \ 1 \cdot 10^{-5} \ D \text{ per event.} \end{split}$$

$E_{\rm lab} = 11 \text{ A GeV}$

 Yield is about one order of magnitude larger

What happens if we introduce nuclear potentials?

Charmed ratios

Charm production depends on the EoS

- As for strangeness production the probability to produce charm subthreshold depends on the maximal compression and thus on the EoS.
- This time the density is larger, so we can probe higher densities.
- On the other hand effects of deconfinement and chiral symmetry restauration have not been considered.
- That makes the whole situation more complicated/interesting
- If charm stays a relevant part of CBM physics, significant work ahead.

Suppression of J/Psi in nuclear medium.

- In p+A collisions we can study the absorption of J/Psi in nuclear matter.
- First we need some understanding of how that absorption can appear and what the cross section may be.

Birthplace of the J/Ψ

- The J/Ψ is 'born' after the heavy state decays inside the nucleus.
- Not 'absorption' of the $J/\Psi,$ but of the mother resonance.
- Reactions of the type: $N^* + N \rightarrow N'^* + N'^*$ $N^* + N \rightarrow N'^* + N'^*$ where the mass of $N'^* < N^*$ so no

where the mass of $N^{+} < N^{+}$ so r J/Ψ can be produced.

fit $f(x) = ax^{1/3}$ --- fit f(x) = ax^{2/3}

150

200

100

А

• Bachelor thesis of Thorben Finke, 2017

The p+A case: nuclear absorption

- Close to threshold the J/Ψ production is proportional to $A^{1/3}$.
- Clear effect of a constant absorption cross section: saturation of yield for large nuclei.

 The absorption cross section then can be measured by comparing different system sizes.

Centrality dependence as indicator for production process

- Below threshold J/Ψ per pion yield keep sincreasing due to secondary interactions.
- Above the threshold we observe almost no centrality dependence, consistent with a Glauber model.
- Direct production dominates.

Charmed nuclei

- Nuclei with one or more bound
 Λ_c are called charmed
 (super-)nuclei.
- Very useful to understand charmed nuclear interactions.
- Studies at J-PARC discussed.

Summary

- Charm physics at CBM and SIS100 still has some potential
- Even probing the dense EoS may be possible
- Nuclear absorption can be large, even if the actual cross section of a formed J/Psi is small.
- Prospects of discovering the first charmed nucleus?
- Enjoy the afternoon!

