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Thanks to the organizers for inviting me

Questions for this talk:

* How to combine the study of charm quarks production (one topic of
workshop)

* With Baryon stopping (another topic)

* And the QCD/nuclear matter equation of state?
* And the goal of CBM@FAIR anyway.
mm=) Charm Sub-threshold



The CBM problem

* CBM claims reaction rates up to 10 MHz.
* Even if we assume much less... 1 Million events per second is a lot

* Most observables will have very low statistical error within hours of
operation.

 Good argument to look for exotic object.
 What else to do with all that event-rate?



There are some interesting questions for low beam energy charm physics
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Charm at high baryon densities
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@ Study properties of charmed hadrons in dense nuclear matter.

@ Study hadronic charm rescattering.

@ Study charm in cold nuclear matter.

e Big part of CBM program. ~ 90 pages in CBM physics book.

e But that was SIS300 — predictions only down to threshold.

Few data available above threshold.
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Charm at high baryon densities
@ But that was SIS300 — predictions only down to threshold.

10 Au+Au (central)

Multiplicity

HSD study: Based on
parametrized cross section. J
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How does particle production work at SIS18/1007?

* | do not consider ,thermal production” as a valid microscopic mechanism.

The old receipe
@ Strangeness is cooked.

@ |dea most of particle production toward equilibration may go through
secondary M+B reactions.

@ Long equilibration times for hadronic matter — signal for quark
matter.

@ Can this picture be uphold in light of new measurements?

P. Koch, B. Muller and J. Rafelski, Phys. Rept. 142, 167 (1986).



Microscopic models

Hadron production goe@ia

Resonance excitation:
@ N+N— X
o N+-M— X
o M+M— X

Keep in mind this is a convenient
way to ensure detailed balance.

N-+N Cross section

Fixed to data where available. Otherwise fixed Matrix element + phase space.
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If resonance excitation and decay are governed mainly by the available
energy and momentum for B+B, does that help in equilibration of hadron
yields?

Run UrQMD for SIS18 energies and fit FINAL particle yields at different time steps:

J. Steinheimer, M. Lorenz, F. Becattini, R. Stock and M. Bleicher, Phys. Rev. C 93, no. 6, 064908 (2016).
A. Motornenko, J. Steinheimer, V. Vovchenko, R. Stock and H. Stoecker, [arXiv:2104.06036 [hep-ph]].
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Thermal fit to UrQMD at SIS18
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Ca+Ca, E_=1.76 A GeV, b=0 fm Ca+Ca, E_,=1.76 A GeV, b>9 fm
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So how can we accumulate enough energy to go above the threshold

@ Let us compare the available energy per collision /s — my, for two different
centralities.

@ Central system more rescatterings, peripheral system less rescatterings

@ Already less then two rescatterings create a tail of high mass states with enough
energy.




Works for strange hadrons....

* Sub threshold phi production well described.
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e Same for Xi. But here there is less data and no elementary cross
section available.
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What are the consequences?

VOLUME 55, NUMBER 24 PHYSICAL REVIEW LETTERS 9 DECEMBER 1985

Subthreshold Kaon Production as a Probe of the Nuclear Equation of State

J. Aichelin and Che Ming Ko'®

Joint Institute for Heavy lon Research, Holifield Heavy Ion Research Facility, Oak Ridge, Tennessee 37831
(Received 11 June 19835; revised manuscript received 23 September 1985)

The production of kaons at subthreshold energies from heavy-ion collisions is sensitive to the
nuclear equation of state. In the Boltzmann-Uehling-Uhlenbeck model, the number of produced
kaons from central collisions between heavy nuclei at incident energies around 700 MeV/nucleon
can vary by a factor of — 3, depending on the equation of state.

In a nutshell:

e Softer EoS leads to higher compression leads to more secondary interaction
* Thus the larger probability to produce particles sub-threshold

an impact parameter b = 0.5 fm.
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FIG. 1. Central density p/po and total kaon-production
probability Px as functions of the collision time for reactions
between Nb nuclei at an incident energy 7004 MeV and at



Potentials in UrQMD

 UrQMD employs a QMD approach with a Skyrme-type mean field potential.

* The force that acts on a nucleon is calculated from the local interaction density
which enters the two terms of the Skyrme potential.
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* The parameters are partly fixed by demanding stable nuclear matter around
saturation density.

* This leaves one free parameter which the controls the ,stiffness” of the EoS

* Note, this approach is rather rudimentary as it does not allow for any realistic high
density EoS.

* Right now: only proof of concept.



Densities reached at SIS100

* The densities reached in the Cemraicolisons T

7 L Cascade

SIS100 energy range depend —=— Hard EoS
strongly on the EoS.
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Can we make predictions about
sub-threshold charm production?

J. Steinheimer, A. Botvina and M. Bleicher, Phys. Rev. C 95, no. 1, 014911 (2017)



* Charm needs some very high mass states
* Basically on the transition to a string
* However, convenient for associated production

N*(1650) | A(1232)
N*(1710) | A(1600)
N*(1720) | A(1620)
N*(1875) | A(1700)
N*(1900) | A(1900)
N*(1990) | A(1905)
N*(2080) | A(1910)
N*(2190) | A(1920)
N*(2220) | A(1930)
N*(2250) | A(1950)
N*(2600) | A(2440)
N*(2700) | A(2750)
N*(3100) | A(2950)
N*(3500) | A(3300)
N*(3800) | A(3500)
N*(4200) | A(4200)




We use data from p+p at /s = 6.7 GeV to fix the N* — N + .J/ U
branching fraction.
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Comparisons to HSD

Parametrized cross section for .J/W
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HSD results taken from:
O. Linnyk, E. L. Bratkovskaya and W. Cassing, Int. J. Mod. Phys. E 17, 1367 (2008)



When applied to central nuclear collisions (min. bias: divide by 5):
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When applied to central nuclear collisions (min. bias: divide by 5):
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Charmed ratios
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Charm production depends on the EoS

 As for strangeness production the probability to produce charm sub-
threshold depends on the maximal compression and thus on the EoS.

* This time the density is larger, so we can probe higher densities.

* On the other hand effects of deconfinement and chiral symmetry
restauration have not been considered.

* That makes the whole situation more complicated/interesting
* If charm stays a relevant part of CBM physics, significant work ahead.



Suppression of J/Psi in nuclear medium.

* In p+A collisions we can study the absorption of J/Psi in nuclear matter.
* First we need some understanding of how that absorption can appear and

what the cross section may be.

Detailed balance — absorption
cross section
@ J/W + p cross section from detailed

balance is very small.
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J/W can be produced.




The p+A case: nuclear absorption

- ptA min. bias at Eiab =15 A L}E‘\:,_,I—*"r -
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e Bachelor thesis of Thorben Finke, 2017



The p+A case: nuclear absorption

@ Close to threshold the .7/ W
production is proportional to
ng]4f3

@ Clear effect of a constant
absorption cross section:

saturation of yield for large
nuclei.

J/¥Y multiplicity
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@ [he absorption cross section
then can be measured by
comparing different system sizes.
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Centrality dependence as indicator for production process

@ Below threshold .J/W per pion yield keep sincreasing due to secondary
Interactions.

@ Above the threshold we observe almost no centrality dependence,
consistent with a Glauber model.

@ Direct production dominates.
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Our prediction from coalescence:

. E,, =11 AGeV, Au+Au, min. bias
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Summary

* Charm physics at CBM and SIS100 still has some potential
* Even probing the dense EoS may be possible

* Nuclear absorption can be large, even if the actual cross section of a
formed J/Psi is small.

* Prospects of discovering the first charmed nucleus?

* Enjoy the afternoon!




