

Study of the 2nd order susceptibilities through the Beam Energy Scan with EPOS 4

Johannès JAHAN (Ph.D. student) - Subatech / CNRS / Nantes University

STRONG 2020 - NA7-Hf-QGP Workshop (4th October 2021)

Under the supervision of : Klaus WERNER - Subatech / Nantes University

	EPOS, an event generator	
Table of Contonte		

Physical context

- What are we looking for ?
- How can we find it ?
- What has been done recently ?

2 EPOS, an event generator

- Event generators
- Generation of an event in EPOS
- Goal of the study
- EPOS 4

Results

- Analysis corrections : volume fluctuations
- Last results

4 Conclusion

Physical context	EPOS, an event generator		
00000			
What are we looking for ?			
Quantum Chromol	D ynamics phase diagram a	and critical point	

Since the QGP has been observed (indirectly), efforts has been made to learn about its properties, and to map the QCD phase diagram.

- **Theoretically :** use models & theories to make predictions (T_c, μ_{B_c}) or to extract information from measurements $(T \& \mu_B \text{ of a collision, viscosity of the QGP...})$
- Experimentally: exploration of QCD phase diagram thanks to the Beam Energy Scan (BES) program, measurements of observables of interest (jet quenching, collective flow...)

Phase diagram of nuclear matter (D. Cebra, 2013)

Question(s) of interest : is there a 1st order phase transition and a critical endpoint (CEP) between QGP and hadronic gas phases ? If yes, where ?

Physical context	EPOS, an event generator	
0000		
How can we find it ?		
Susceptibilities		

To answer this question, many tools can be used, among which are the **susceptibilities**, which quantify how an extensive property of a system changes under the variation of an intensive property.

In a grand-canonical ensemble (GCE), a formalism often used to describe HIC, they are **theoretically defined** as derivatives of the partition function $Z(T, V, \mu)$:

$$\left|\chi_{i,j}^{X,Y} = \frac{1}{VT^3} \cdot \left[\frac{\partial^{i+j}Z(T,V,\mu)}{(\partial\hat{\mu}_X)^i(\partial\hat{\mu}_Y)^j}\right]_{\mu_{X,Y}=0}\right| \qquad (\hat{\mu} = \frac{\mu}{T})$$

As we are searching for radical changes in the state of nuclear matter, i.e. phase transition, these derivatives of Z should reveal them.

(P. Parotto et al., 2020)

Physical context	EPOS, an event generator		
00000	000000	000	000
How can we find it ?			
Susceptibilities			

In a more convenient and understandable way, susceptibilities can be written as a function of the net-charge cumulants $(N_{B,Q,S} = n_{B,Q,S} - n_{\overline{B},\overline{Q},\overline{S}}).$

They represent in fact event-by-event fluctuations of the considered net charges, and can be linked to the statistical moments of their distributions. 2^{nd} order susceptibilities for X/Y = B, Q, S

Linked to the (co)variances of the considered charges :

$$\chi_{11}^{XY} = \frac{1}{VT^3} \sigma_{XY}^{11} = \frac{\langle N_X N_Y \rangle - \langle N_X \rangle \langle N_Y \rangle}{VT^3}$$
$$\chi_2^X = \frac{1}{VT^3} \sigma_X^2 = \frac{\langle N_X^2 \rangle - \langle N_X \rangle^2}{VT^3}$$

Also, in order to get rid of volume and temperature factors, as they cannot be measured directly in experiments, ratios are often used.

Ratios
$$C_{BS} = \frac{\sigma_{BS}^{11}}{\sigma_{S}^{2}}$$
 $C_{QB} = \frac{\sigma_{QB}^{11}}{\sigma_{B}^{2}}$ $C_{QS} = \frac{\sigma_{QS}^{11}}{\sigma_{S}^{2}}$

Physical context	EPOS, an event generator	
00000		
What has been done recently ?		
Experimental results		

STAR collaboration measured, for N_Q , $N_{protons}$ and N_{kaons} (proxies for N_B and N_S) in a restrained phase space ($|\eta| < 0.5 + 0.4 < p_T < 1.6 \text{ GeV/c}$):

•
$$\begin{pmatrix} \sigma_Q^2 & \sigma_{Q,p}^{11} & \sigma_{Q,k}^{11} \\ " & \sigma_p^2 & \sigma_{p,k}^{11} \\ " & " & \sigma_p^2 \end{pmatrix}$$
 vs < N_{part} > ($\chi_{11,2}^{B,Q,S}$ proxies

Physical context	EPOS, an event generator	
00000		
What has been done recently ?		
Experimental results		

STAR collaboration measured, for N_Q , $N_{protons}$ and N_{kaons} (proxies for N_B and N_S) in a restrained phase space ($|\eta| < 0.5 + 0.4 < p_T < 1.6 \text{ GeV/c}$):

•
$$\begin{pmatrix} \sigma_Q^2 & \sigma_{Q,p}^{11} & \sigma_{Q,k}^{11} \\ " & \sigma_p^2 & \sigma_{p,k}^{11} \\ " & " & \sigma_p^2 \end{pmatrix}$$
 vs < N_{part} > ($\chi_{11,2}^{B,Q,S}$ proxies

Koch ratios C_{Qp,Qk,pk} (proxies for C_{QB,QS,BS})

- as a function of $\langle N_{part} \rangle$
- as a function of $\sqrt{s_{NN}}$

Physical context	EPOS, an event generator	
00000		
What has been done recently ?		

Lattice QCD + Hadron Resonance Gas model

C. Ratti et al. :

 breakdown of hadronic species contributions to susceptibilities, studied from IQCD
+ HRG model calculations (gas of non-interacting hadrons and resonances in a box)

Physical context	EPOS, an event generator	
00000		
What has been done recently ?		

Lattice QCD + Hadron Resonance Gas model

C. Ratti et al. :

- breakdown of hadronic species contributions to susceptibilities, studied from IQCD
 + HRG model calculations (gas of non-interacting hadrons and resonances in a box)
 - \Rightarrow best proxies for ratios

(so potentially the most sensitive ones)

$$\begin{split} C_{BS} &= \frac{\chi_{11}^{BS}}{\chi_2^S} = \frac{\sigma_{\Lambda}^2 + 2\sigma_{\Xi}^2 + 3\sigma_{\Omega}^2}{\sigma_{\Lambda}^2 + 4\sigma_{\Xi}^2 + 9\sigma_{\Omega}^2 + \sigma_{k}^2} \quad \left(= \frac{\sigma_{\rho k}^{11}}{\sigma_{k}^2} \right)_{STAR} \\ or &= \frac{\sigma_{\Lambda}^2}{\sigma_{k}^2 + \sigma_{\Lambda}^2} \quad (\text{easier to measure experimentally !}) \\ C_{QS} &= \frac{\chi_{11}^{QS}}{\chi_2^S} = \frac{1}{2} \cdot \frac{\sigma_{k}^2}{\sigma_{k}^2 + \sigma_{\Lambda}^2} \qquad \left(= \frac{\sigma_{Qk}^{11}}{\sigma_{k}^2} \right)_{STAR} \end{split}$$

Physical context	EPOS, an event generator	
00000		
What has been done recently ?		

Lattice QCD + Hadron Resonance Gas model

- C. Ratti et al. :
 - breakdown of hadronic species contributions to susceptibilities, studied from IQCD
 + HRG model calculations (gas of non-interacting hadrons and resonances in a box)
 - \Rightarrow best proxies for ratios

(so potentially the most sensitive ones)

 \Rightarrow results depending on \sqrt{s} + kinematic cuts compared with STAR data

$$\begin{split} C_{BS} &= \frac{\chi_{11}^{BS}}{\chi_2^S} = \frac{\sigma_{\Lambda}^2 + 2\sigma_{\Xi}^2 + 3\sigma_{\Omega}^2}{\sigma_{\Lambda}^2 + 4\sigma_{\Xi}^2 + 9\sigma_{\Omega}^2 + \sigma_k^2} \quad \left(= \frac{\sigma_{_{DK}}^{11}}{\sigma_k^2} \right)_{STAR} \\ or &= \frac{\sigma_{\Lambda}^2}{\sigma_k^2 + \sigma_{\Lambda}^2} \quad (easier \text{ to measure experimentally }) \\ C_{QS} &= \frac{\chi_{11}^{QS}}{\chi_2^S} = \frac{1}{2} \cdot \frac{\sigma_k^2}{\sigma_k^2 + \sigma_{\Lambda}^2} \qquad \left(= \frac{\sigma_{_{QK}}^{11}}{\sigma_k^2} \right)_{STAR} \end{split}$$

... and what about event generators ?

EPOS, an event generator	
000000	

Contents

Physical context

- 2 EPOS, an event generator
 - Event generators
 - Generation of an event in EPOS
 - Goal of the study
 - EPOS 4

3 Results

4 Conclusion

	EPOS, an event generator	
	000000	
Event generators		
What is EPOS ?		

Event generators are programs made to compute models in order to simulate every step of a collision (e.g. EPOS, PYTHIA, HIJING++...).

Advantages : - perfect detector, as final-state particles are all listed (no uncertainties) - dynamical approach

(indeed, there's always a shadow in the picture : one has to be careful on the applicability, and phenomenological approaches generally requires parametrisation)

> Energy conserving quantum mechanical approach, based on Partons, parton ladders, strings, Off-shell remnants, and Saturation of parton ladders

Event generator based on parton-based Gribov-Regge Theory (PBGRT) unifying Parton model and Gribov-Regge theory by solving inconsistencies of both models.

Can simulate with the same formalism any type of collision consistently :

 $e^{+/-} + e^{+/-}$ $e^{+/-} + p$ p + p p + A A + A

	EPOS, an event generator	
	00000	
Generation of an event in EPOS		
Initial conditions ?	aara aarana praadura	

initial conditions & core-corona procedure

Primary interactions treated with PBGRT Exchange of multiple Pomerons in parallel

Schematic representation of a collision

(K. Werner et al., 2000)

Core-corona separation

Those ladders are formed by strings, or color flux tubes

 $(q-g-...-g-\overline{q}$ chains) with "kinks" due to tranverse gluons.

A simple interaction within the PBGRT (K. Werner, 2018)

	EPOS, an event generator	
	00000	
Generation of an event in EPOS		

Initial conditions & core-corona procedure

Primary interactions treated with PBGRT Exchange of multiple Pomerons in parallel

 \Rightarrow can be seen as parton ladders which are cut (particle production) or uncut (σ calculation)

(= Multiple Parton Interaction)

Diagrammatic view of a cut ladder (K. Werner et al., 2016)

Multiple interactions within the PBGRT (K. Werner, 2018)

Core-corona separation

Those ladders are formed by strings, or color flux tubes $(q-g-...-g-\overline{q} \text{ chains})$ with "kinks" due to tranverse gluons.

In HIC (but not only !), many strings may overlap, so we can separate :

- core = high string density region (> ϵ_c)
- corona = escaping segments (with high p_T) (< ε_c)

Final state particle

	EPOS, an event generator	
	000000	
Goal of the study		
What we can(n	ot) study with EPOS	

<u>Recent feature :</u> inclusion of a new EoS containing CEP + 1st order phase transition.

However, the hydrodynamic evolution of the core in EPOS (macroscopic quantities) does not include fluctuations : susceptibilities are NOT expected to be sensitive to any possible CEP within the hydro phase

 \Rightarrow search for signatures of CEP impossible with EPOS by construction ?

Recent work with EPOS *(see M. Stefaniak's work again)* showed almost no differences between new and old EoS

In fact, in EPOS, we expect that most of the fluctuations come from initial conditions, hadronisation process and/or hadronic cascades.

(may even dominate the fluctuations of phase transition we are seeking...)

Then, what we plan to do is

1. comparing cumulants before & after UrQMD (+ with STAR results), to see the impact of hadronic cascades on the susceptibilities

	EPOS, an event generator	
	0000000	
Goal of the study		
What we can(no	t) study with EPOS	

Furthermore, the choice of grand-canonical ensemble to describe heavy-ion collisions is questionable (taken from M. Nahrgang's talk) :

in a GCE, the system is :

- in thermal equilibrium (=long-lived)
- in equilibrium with a particle heat bath
- static

the system created in a HIC is :

- short-lived
- inhomogeneous
- highly dynamical

Hence, we also include in our plan

 comparing cumulants after decays for micro (new standard in EPOS 4)
grand canonical (= classical Cooper-Frye procedure) with STAR results, to see the impact of hadronisation on the susceptibilities

3. use the "best" proxies to test their sensitivity

	EPOS, an event generator	
	0000000	
EPOS 4		
Toward the next	public release : EPOS 4	

As another important part of my Ph.D., I am involved in the development of **EPOS 4**, a new version planed to be released publicly in late 2021 / early 2022.

In order to help and improve the validation process of this new version before its release, I've been working on :

adding the HepMC output format to enable EPOS usage with RIVET, which is a simple and standardised tool made to automatise comparison between event generators simulations and experimental data from papers

 \Rightarrow makes it more user-friendly

+ integrating RIVET to the online EPOS analysis framework

 \Rightarrow provides huge and constantly growing library of data and analyses + fastens the validation process

 searching for experimental data of basic observables and writing the corresponding analyses (when not available in RIVET)

 \Rightarrow mandatory for validation of the new EPOS version

Hence, considering my topic of interest, I've been put in charge of the test of EPOS 4 for the BES energies.

EPOS, an event generator	Results	
	000	

Contents

2 EPOS, an event generator

- Analysis corrections : volume fluctuations
- Last results

	EPOS, an event generator	Results	
		000	
Analysis corrections : volume fluctuations			
Centrality bin width	effect (CBWE)		

When plotting whatever moment $\sigma^{i,j}$ vs N_{part} , one induces trivial fluctuations due to the volume variation of the system : this is the CBWE.

In fact, for a certain centrality bin considered (and even for a single N_{part} value), there will be volume variations in the collisions (\leftrightarrow different final-state multiplicities) that will contribute to $\sigma_{p,Q,k}^{11,2}$ without being "real fluctuations" (the one we are seeking).

To minimise this effect, STAR collaboration measure $\sigma_{p,Q,k}^{11,2}$ vs N_{ch} for each centrality bin considered, and calculate the corresponding weighted mean value :

 n_i the number of events for the multiplicity bin *i* n_c the number of events in the centrality bin *c*

	EPOS, an event generator	Results	
		000	
Analysis corrections : volume fluctuations			
Centrality bin width effe	ect (CBWE)		

When plotting whatever moment $\sigma^{i,j}$ vs N_{part} , one induces trivial fluctuations due to the volume variation of the system : this is the CBWE.

In fact, for a certain centrality bin considered (and even for a single N_{part} value), there will be volume variations in the collisions (\leftrightarrow different final-state multiplicities) that will contribute to $\sigma_{p,Q,k}^{11,2}$ without being "real fluctuations" (the one we are seeking).

 $\Rightarrow \frac{\text{Our method (faster \& easier) : calculate } \sigma_{p,O,k}^{11,2} \text{ vs } N_{ch}, \text{ and then}}{\text{convert } N_{ch} \rightarrow N_{part} \text{ from the}} < N_{part} > \text{vs } N_{ch} \text{ distribution}}$

	EPOS, an event generator	Results	
00000	0000000	00●	000
Last results			
Au+Au @ $\sqrt{s_{NN}}$	= 200 GeV/A		

Results from recent EPOS 4 version (3 months-old) compared with STAR data

Physical context	EPOS, an event generator	Results 000	Conclusion •••••
Contents			

Physical context

2 EPOS, an event generator

3 Results

Physical context	EPOS, an event generator	Results 000	Conclusion OOO
Summary & Outlook			

Main research goal : use last version of EPOS 4 study the impact of hadronisation and hadronic cascades on 2nd order susceptibilities of *B*, *Q*, *S*, using STAR proxies and best proxies proposed by C. Ratti *et al.* through BES

Status :

- 1. compare EPOS results with STAR measured proxies :
 - $\sqrt{s_{NN}} =$ 200 GeV/A :

OK qualitatively for variances, even almost quantitatively covariances fall for central collisions

 \Rightarrow finish EPOS 4 validation (\approx *OK* @ 200 *GeV/A* \rightarrow *go to lower energies*)

ightarrow check results for other energies in order to check the energy dependence

- 2. implement the best proxies from C. Ratti et al.
- 3. compare results from different hadronisation processes
- 4. compare results before and after hadronic cascades
- 5. take a look at higher order cumulants and ratios (skewness, kurtosis...) ?

EPOS, an event generator	Conclusion
	000

Thanks for your attention !

Every comments or suggestions are welcome ©

A bit more about EPOS...

More references about EPOS :

- primary interactions & hydrodynamics in EPOS
- hydrodynamics in EPOS
- heavy flavors in EPOS
- jet-fluid interaction in EPOS

Recent developments for EPOS 4 :

- parton saturation (see also here)
- microcanonical decay of the core

+ development of EPOS-HQ for heavy flavour observables

Stay tuned ! More papers to come...

PBGRT - The motivations

Parton model

Mainly used for inclusive cross-section calculations

Deep Inelastic Scattering

Problems :

- can only calculate cross-section for hard processes \rightarrow not suitable alone for HIC

Gribov-Regge theory

EFT for Multiple Pomeron Interaction

(K. Werner et al., 2000)

Inconsistencies :

- energy conserved for particle production but NOT for cross-section calculations
- although multiple scattering approach, all interactions are not treated equally

Solution : merge both into a formalism treating consistently hard and soft scattering \Rightarrow Parton-based Gribov-Regge Theory ! Main principle of PBGRT

In the PBGRT, an elementary interaction is modeled as a Pomeron.

- Soft process (Q² < 1 GeV) : mainly elastic scatterings, parametrised T-matrix (Regge poles)
- Hard process (Q² > 1 GeV) : pQCD applicable, computed T-matrix (DGLAP equation)
- Semi-hard process ($Q^2 > 1$ GeV $q_{sea}/\overline{q}_{sea}/g$) : using both previous formalisms

Hadron Resonance Gas Model (summarised from C. Ratti et al.)

It assumes that a gas of interacting hadrons in ground states can be described by a gas of non-interacting hadrons and resonances.

One can then re-write partition function, allowing to consider kinematic cuts simply by changing the phase space integration :

$$\ln(\mathscr{Z}_R) = \eta_R \frac{V.d_R}{2\pi^2 T^3} \int_0^\infty p^2.dp.\ln\left(1 - \eta_R.z_R.e^{-\varepsilon_R/T}\right)$$

Hence, with such assumption, one can decompose susceptibilities as a function of hadronic species :

$$\chi_{ijk}^{BQS}(T,\hat{\mu}_{B},\hat{\mu}_{Q},\hat{\mu}_{S}) = \sum_{R} \sum_{i \in stable} (P_{R \to \rho})^{l} \times B_{\rho}^{i} Q_{\rho}^{j} S_{\rho}^{k} \times I_{l}^{R}(T,\hat{\mu}_{B},\hat{\mu}_{Q},\hat{\mu}_{S})$$

with :

- l = i + j + k
- $P_{R \to p} = \sum_{\alpha} N_{R \to p}^{\alpha} \times n_{p,\alpha}^{R}$: $\langle n_p \rangle$ produced in process α by each resonance R
- B_p^i, Q_p^j, S_p^k : quantum numbers of particle specie p

$$- I_l^R(T, \hat{\mu}_{B,Q,S}) = \frac{\partial^l}{\partial \hat{\mu}_R^l} \left[\frac{1}{VT^3} \sum_R \ln(\mathscr{Z}_R) \right] \qquad (\hat{\mu}_R = \hat{\mu}_B \cdot B_R + \hat{\mu}_Q \cdot Q_R + \hat{\mu}_S \cdot S_R)$$