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Why real-time?

Performing calculations directly in real-time (Minkowski space-time)

« avoids the need of an analytic continuation in comparison with the
Matsubara formalism, and

- allows for treating phenomena arbitrarily far from equilibrium, e.g. many
aspects of heavy ion collisions, which are very dynamic in nature.
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Idea of the (Functional) Renormalization Group

» Suppose the effective action I' of the theory is known at some
momentum/energy scale k, which we denote by I'y, i.e. all fluctuations from
modes |p| = k have been taken into account.

+ Realized by modifying the action with an infrared cutoff ASi[¢°, ¢],
S — S+ AS;

for which the term AS}, suppresses all modes with |p| < k.

» Has the structure (D = d + 1 number of spacetime dimensions)
asildl =5 [ [ T @ o a)olw), 6T = (60,

with the 2 x 2-‘regulator’ matrix

in momentum space.
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Idea of the (Functional) Renormalization Group

» Change the scale a bit k — k + dk, arrive at ‘flow’ equation (Wetterich '93,
Berges, Mesterhazy '12)

; 1
Okl“k[qﬁc,qﬁ”} = —%tr (8kRk o Gk), G =— (F;f) + Rk>

» Has the form of a 1-loop integral,

Ty = —~

2 \
but is exact. Full propagator

« Have I';y 222 5, classical action.
(Demonstrated via saddle-point approximation.)

« Spectral function given by p(w) = 4iTm G (w).
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Causal Regulators

» Regulator changes analytic structure of the propagators,

R 1
G = —— tarded
k(@ p) I'{(w, p) + RE(w, p) (retarded)
1

T (w,p) + Ri(w, p)

G (w,p) = (advanced)

» What are the consequences?

» Maybe everything fine for k = 0?
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Causal Regulators?

Test:

» Observe property of Keldysh action:

L gt (O ) (@)
s=3 [ o) < ) <¢q(p))

follows from that if ™ = ¢~ the partition function is Z = 1, i.e. the action
vanishes.
» Necessary condition for the correctness of the flow.

Find:
» Popular regulators like a sharp/exponential/algebraic/... cutoff produce such
an unphysical component during the flow.
» Problem of causality is not trivial. (Duclut, Delamotte '18)
» An insufficient regulator indeed leads to an incorrect Keldysh action.
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Causal Regulators

What can we do? (Start with the 0+1 dimensional case, i.e. quantum mechanics.)
The most simple regulator that we could write down has the form of a purely

masslike shift, (Callan-Symanzik regulator)

RY A (w) = —2k?

- Trivially causal, since it induces only a mass-shift m? — m? + k2 in the
propagators.

+ Too simple?

» Flow no longer conformal with K. G. Wilson’s idea of integrating out
momentum/energy shells?
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Heat Bath Regulators

Regulator motivated by physics: (Causality guaranteed!)

» Imagine AS% is the result from integrating out an external ‘heat bath’.

» The heat bath is modeled as an ensemble of independent harmonic
oscillators, attached to the particle. (cf. talk by Dominik, Caldeira-Leggett model)

Particle @ \N\NANANOHB osci. 2
P @ 2O oy (F (o &)

« Integrate out heat bath = Particle acquires self-energy ni/A

. gs gs ®dw 2w J(W
o E ot [
o T (w+ie)? —w

- Fully controlled by a spectral density J(w) =

0w — ws)

« Invert: 2Im X% (w) = J(w), but the self-energy ZR also has a non-vanishing
real part.
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Heat Bath Regulators

« Now make the spectral density k-dependent, J(w) — Ji(w) and choose it

to damp infrared modes.

« The resulting self-energy is the regulator, ©%/4 — R

Julw)i

whk

\ —— Re[Ru(w)Ik?]
4

Im{Ry(w)/k?]
wik

S

m? — m®—Amj (k)
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R/A

Example:
Jie(w) = 2kw exp { —w” /k*}
= ¢(t) ~ e " for w < k,damped

But: Heat bath induces negative (!)
shift in the squared mass
Can be quantified by

® dw Jp(w) K
Amj (k) = — o
mi (k) /0 27 w VT

This makes the theory unstable and
acausal for large enough values of k.
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Heat Bath Regulators

» Way out: We learned that a masslike shift is definitely causal.
» So: Just add a masslike ‘counter-term’ to compensate the shift in the
squared mass!

Heat Bath Regulator

R/A ®Cdw' 2w Tk (W) 2
_— 2O gk
R (w) /0 2m (w+ig)? —w? “

— RelR(wIK]
IR

— RelRwIK] — RelRUwIK]
IR iR K]

\/ -o0s]
a=0 a=1/V4m, a=1/Var+1/2
(Balanced) (Balanced + regulated)
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Heat Bath Regulators for a Field Theory

» What about a field theory?

» Arguably simplest ansatz: Imagine an independent bath of harmonic
oscillators for every spatial momentum mode p.

» New degree of freedom: Multiply the w-dependent regulator with some
function r (p) that acts as a cutoff for [p| > k, e.g.
re(p) = (1 — p?/kH)O(k? — p?), (‘Sharp’ cutoff)

Re{RE (WAL
IR pVRYZE

Real part (Mass shift) Imaginary part (Damping)
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Heat Bath Regulators for a Field Theory

» And when we have no preferred frame of reference, e.g. no external
medium? What about Lorentz-invariance?

» A regulator like above would break Lorentz-symmetry.

 Imagine the heat bath to be an ensemble of Klein-Gordon fields with a
relativistic dispersion relation w? = p? + m?,
~» Our field gains a self-energy

. gs  gs > dy’ Je(p?)
Y = vt == o0 (0 L io2 2 2
5 o 2m (p0+ig)? —p*—p

s

with invariant spectral density J(1?) = 27 >_, g26(u® — m2).

- Reintroduce masslike counter-term —2ak?, and then:
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Heat Bath Regulators for a Field Theory

General form of a Lorentz-invariant regulator:

N 0o dMQ Jk(,U/Q) 5
RE/A(? 0y _ _/ ap” — 2k
(7 senp) o 27 PO tieZ—p2—p2

Example:

2ku

M) = e

0.50

« »” is a Lorentz-scalar.

- sgnp’ is also a Lorentz-scalar, but only if p

is timelike and if we restrict the allowed
Lorentz-transformations to the
orthochronous subgroup O™ (1, d).

ImIRE(w,p)/]

* RG interpretation: Integrate out shells of
constant invariant mass.
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A Glance at Critical Dynamics - Model A

Spectral function (cf. talk by Dominik)

/ dte™* /dd:m ,¢(0)]) ~ w™° at critical point

+ Scaling exponent o = (2 — n*)/z

 Related to dynamical critical exponent z, defined by &; ~ £*

Results: (¢*-theory with dissipative dynamics, 1-loop self-consistent truncation scheme)
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Summary & Outlook

We have

analyzed the influence of a non-causal regulator on the Keldysh action,

constructed regulators in the real-time FRG that automatically take care of
causality and Lorentz-invariance,

calculated critical spectral functions using a 1-loop self-consistent truncation
scheme in Model A.

For the future, we plan to

* include fermions (— Low-energy effective models of QCD in real-time),
* inspect the real-time dynamics of models B,C,D,...,H,...

 analyze non-equilibrium phenomena.
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BACK UP
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Causal Regulators?

Diagram(s) that correspond to the unphysical upper left (cc) component of the
Keldysh action,

— i /_ o (G REWIGE W) + G @) R @) W)

L0 foraflow that respects the causal structure of the action.

Propagators:

1 1
202 £ iyw —m2 + RR(A)( )

G W) = -
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Causal Regulators?

Well-known regulator from the Euclidean FRG (Litim '01)

Regulator has the form
R (w) = 2(k* — 0O (K? — w?),

with a sharp cutoff at w = k.

» Result:
4 Yim=05 ——
s 12 F J/ \
g "\
g ! [ ,
3 [ * Flow indeed generates an
o el ’J’ \ unphysical cc component in
z / the action.
S o4+ /
E
;02»/ * Poleatk =m
0 E—
0 1 3 4
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Causal Regulators?

* Is it the sign?
» Regulator now has the form

Ry (w) = —2(k* — w”)O(k* — w?),

still with a sharp cutoff at w = k.

* Result:
o ' ' yim=05 ——
005 //\ ]
g O | T + No more singularities in the
g oo 9 ] flow.
s \ — Flow still generates an
£ ‘\ | ] unphysical cc component in
ro\ ] the action.
0.25 L
] 1 2 3 4 5
kim
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Lorentz-invariant causal regulator plots

~Re(R{(wp)/k’]

Im{RE(w,p)K]

Real part (Mass shift) Imaginary part (Damping)
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Critical Dynamics

Truncation: (1-loop self-consistent)
0 Z,!(w)w2 — Zf —mip? — i (w)w
/qﬁ (c.c. of adv. iy (w)T ¢(p)
4, Ak(b (2)¢°(2) 9 (x)p" (x)

Flowing quantities: Z)! (w), v (w) on grid, and Zi-, m?, Ax
1-Loop Flow Equation:

=0

with AT (w) = Z,! (W)w? — ik (W)w.

~.
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Critical Dynamics - Spectral functions of Model A
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