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From QCD to QGP:

@ At low T and low pug —
Hadronic gas

@ At low T and high up — gas
of neutron

@ For T > 175MeV — QGP

@ At high T and pug — 0, Big
Bang

Nuclear collisions and the QGP expansion
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Figure: Space-time evolution of
HIC.
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Figure: Phase diagram of nuclear
matter [1].

Current Accelerators:

e SPS & LHC, CERN

e RHIC, BNL, New York
Future Accelerators:

o FAIR, Germany

o NICA, Russia
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Initial fluctuation  hydrodynamic model final state interactions

nergy conserving multiple scattering Partons, parton
. le) lo) )

ladder and strings (ff-shell remnantes Saturation [2, 3].

INITIAL CONDITION: A Gribov-Regge multiple scattering approach is employed
(PBGRT).

CORE-CORONA SEPARATION: based on momentum and density of string segments.

VISCOUS HYDRODYNAMIC EXPANSION: Using core part and cross-over equation
of state (EOS) compatible with lattice QCD.

STATISTICAL HADRONIZATION: employing Cooper-Frye procedure and equilibrium
hadron distribution.

FINAL STATE HADRONIC CASCADE: applying the UrQMD model.

tring Dynami

INITIAL A4+A COLLISION: leads to formation of strings that decays to pre-hadrons,
done by PYTHIA.

QGP FORMATION: based on local energy-density.

QGP STAGE: evolution based on off-shell transport egs. derived by Kadanoff-Baym
egs. with the DQPM defining the parton spectral function i.e. masses and widths.
HADRONIZATION: massive off-shell partons with broad spectral functions hadronize
to off-shell baryons and mesons.

HADRONIC PHASE: evolution based on the off-shell transport eqs. with
hadron-hadron interaction.
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Purpose: We try to employ a sophisticated EPOS approach to
determine the initial distribution of matter (partons/hadrons)
and then use PHSD for the evolution of matter in a
non-equilibrium transport approach.
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Figure: EPOS particles production hyper-surface initial condition for PHSD model. Zero

time corresponds to maximum overlapping.
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Initial Condition in EPOS:

Parton Based Gribov Regge Theory (PBGRT) [6]:

e Hard/Soft processes, Energy conservation by multiple
Pomeron exchange

e Calculation of elastic/inelastic Cross-Sections (uncut
ladder, soft contribution)

e Particle production [7] (cut ladder, semi-hard/hard
contribution)
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projectile+target — pomerons — string segments —
core/corona part — rope segments — core/corona
pre-hadrons

rope segments: longitudinal color field, consider in 3D,
larger string tension and transverse momentum.

core pre-hadrons : decay of rope segments/clusters based
on Microcanonical treatment [8].

The principle problem: EPOS uses light-cone dynamics,
PHSD uses real-time dynamics.
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EPOSi+PHSD overview
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All EPOS core/corona pre-hadrons are inserted into PHSD arrays and

core pre-hadrons melted into QGP with respect to the Energy Density
(> 0.5GeV/ fm?) condition.

@ EPOSi+PHSD and pure PHSD ED: Global computing frame [9]
e EPOS ED: Comoving frame [10]
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Energy Density Evolution
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,

for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.

e EPOS: bumpy structure in the longitudinal direction
o EPOSi+PHSD: nearly identical to the EPOS
o PHSD: begins later and has more ED than others
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,

for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.

o EPOS: transverse expansion and transverse flows

o EPOSi+PHSD: less transverse expansion than EPOS, same
forms as pure PHSD

o PHSD: more ED than others and expands spherically
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Dynamical description of strongly interacting system in

PHSD
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In scalar field theory, one can

obtain the evolution equation

for different Green’s function
called “Kadanoff-Baym equation™

pictures

Wigner transform
On G/ G:
Transport equation
— equation of
motion for test-
particle ansatz
(1_,=0).
iG=(P,. P.t.X)
— dX/dt, dP/dt
dE /dt

Wigner transform
On G* G*:
Spectral function
A uses in DQPM
— to calculate
effective mass,
spectral width
and scalar mean-
fields.
DQPM computes
entropy/energy
density, pressure
and interaction
measure




QGP phase in PHSD

To study the properties of the medium — DQPM [11]:
o Using spectral function A in DQPM : R
2 ™ R
A(p) = (pupufj\/,ly%%+4»y2pg7 I'= 2'7]70, M2 = m2 + Rez
To have Masses M? and widths ~ of partons

M2(T) = $[(Ne+ N)T? + 3 %
VQ(T)—Nﬂl E

2
fV —1 g ]V 27
(T) = SN, 92[T2+ FéqL ’Yq/q(T): oN, g l 20

g7r2]

M?
a/q
g (T/TC) =running coupling, p=chemicl potential, N¢, Ny : Number of color and flavor

o Entropy density s%? is a grandcanonical quantity in DQPM
which leads to measure the pressure s = g—;, energy density
e = T's — P, interaction measure W (T') = ¢(T') — 3P(T') and

dv%(PS)

scalar mean-field Us(ps) = =7 °
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To investigate the QGP’s dynamics — Generalized transport
equation [12] B B
SAT{M,iG=} — ${T, MiG=}] = iy “iG> — Y 7iG*<
A =spectral function, I' =Width, M = mass function in Wigner-space, > =self-energy
Collision term = i3, <iG> — 3. >iG<
e Employing the test-particle Ansatz
iG<(Po, Pot, X) =~ N, ﬁ(s(?’)(x — X;(£))8G) (P — Py (£))5(Py — €())
to transport equation — derive the equation of motion by
neglecting the collision term — dX;/dt,dP;/dt,de;/dt,
obtain the coordinates, momentum and energy of particles
in time t.

Hadronization:

As the system expands and cools down, the energy density
drops until hadronization occurs. The colored off-shell partons
with broad spectral function are combined into off-shell
colorless hadrons.



RESULTS

Comparing the
Particle Production, Elliptic Flow (vy), Triangular Flow (vs),
Quadrangular Flow (v4), Transverse Momentum (pr) and
Transverse Mass (mg) for Au-Au@200GeV
With different simulations:

EPOSi+PHSD, EPOS, and pure PHSD



Results

Charged Particle Production: Au-Au@200GeV
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Anisotropic Flow

Fourier series:

3N
BLN — b SN (14 552, 2vncos(n(é — Yrp))
vy (pt,y) =< cos(n(¢p—¥rp)) >, va = elliptic flow, vy =
triangular flow, v4 = quadrangular flow, ¥ pp = reaction

plane angle [13].

Elliptic Flow vy: Au-Au@200GeV
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Figure: EPOSi+PHSD, EPOS, Pure PHSD
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Triangular Flow v3: Au-Au@200GeV
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Results

Quadrangular flow vs: Au-Au@200GeV
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Transverse Momentum: Au-Au@200GeV
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Figure: EPOSi+PHSD, EPOS, pure PHSD



Results

Transverse Mass: Au-Au@200GeV
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Figure: EPOSi+PHSD, EPOS, pure PHSD




Conclusion and Outlook
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Summary and Conclusion:
e v Two different HIC models were successfully combined.

o v Comparison of space-time and energy density evolution
by EPOSi+PHSD with pure EPOS and pure PHSD.

o v Considering observables like charged particles
production, vy, vs, v4, pT, MT.

o x High pr part has not been improved yet by
EPOSi+PHSD.

Current work:

o Investigation of electromagnetic probes, photon and
dilepton production.

Outlook:
o Checking EPOSh +PHSD to study the high pr part.

o Comparison EPOSi+PHSD with different range energies
from RHIC to LHC for various systems like p-p and Au-Au
collisions.

@ Checking heavy flavor particles behavior
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Au-AU@200GeV,b=7fm,Num=20, STPHSD=0.05, ¥
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