CLUSTER PRODUCTION IN HIGH ENERGY HEAVY ION COLLISIONS

Marcus Bleicher Institut für Theoretische Physik Goethe Universität Frankfurt GSI Helmholtzzentrum Germany

This work is done in collaboration with:

- Nihal Buyukcizmeci
- Alexander Botvina
- Christoph Herold
- Ayut Limphirat
- Tom Reichert
- Paula Hillmann

Outline

- Motivation
- Coalescence vs thermal emission
- Small systems
- Large systems
- Antimatter and Hypermatter
- Conclusions

Motivation

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

W. Greiner, PR 1986

- Learn about phase structure of QCD
- Understand emission structure
- Explore composite particles
- Investigate influence on fluctuation observables

QCD Phase Diagram

L. Bravina, M.B., et al., JPG 1999 I. Arsene et al., PRC 2007

- Except for $\mu_B \rightarrow 0$, many features are unknown
- Order of PT, critical points, dof (Quarkyonic matter?)

Fluctuations in quark densities \rightarrow Clusters might be enhanced

Angular distribution, 12 fm/c

→ Strong fluctuations, inhomogeneous quark densities → Cluster enhancement C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, Nucl.Phys. A925 (2014) 14-24

Thermal emission vs. BB nucleosynthesis

- Thermal model provides good description of cluster data, e.g. deuteron, even with protons being slightly off
- Surprising result, because the binding energy of the deuteron (2.2 MeV) is much smaller than the emission temperature (150-160 MeV)
- Why is it not immediately destroyed? Related to famous deuterium bottleneck in big bang nucleosynthesis: If the temperature is too high (mean energy per particle greater than d binding energy) any deuterium that is formed is immediately destroyed
 → delays production of heavier clusters/nuclei.

Possible explanation: PCE

- Partial Chemical Equilibrium might solve the problem (see Tim Neidig, Tuesday)
- See also PCE talk by Paula Hillmann (Tuesday) for PCE and fluctuations
- Main idea solve the rate equation with PCE assumption:

$$\frac{\mathrm{d}N_{\mathrm{d}}}{\mathrm{d}t} = -\sum_{x=\pi,K,\overline{K}} \tilde{\alpha}_{\mathrm{d}+\mathrm{x}\rightleftharpoons 2N+x} N_x (N_{\mathrm{d}} - c_{\mathrm{d}}^{N^2} N_N^2)$$

Solving the puzzle of high temperature light (anti)-nuclei production in ultra-relativistic heavy ion collisions

Tim Neidig,^{*} Kai Gallmeister,[†] and Carsten Greiner Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany

Marcus Bleicher

Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany and Helmholtz Research Academy Hesse for FAIR (HFHF), GSI Helmholtz Center, Campus Frankfurt, Max-von-Laue-Straße 12, 60438 Frankfurt am Main, Germany

Volodymyr Vovchenko Nuclear Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA (Dated: September 2, 2021)

Some history...

• Around 1993 the field did not understand anti-deuteron production within the most simple coalescence models i.e. $\frac{1}{\sigma} \frac{Ed^3 \sigma_D}{d^3 P} = B_2 (\frac{1}{\sigma} \frac{Ed^3 \sigma_p}{d^3 p})^2$

Reason:

Freeze-out volume of deuterons and anti-deuterons might be different (S. Mrowczynski, PLB308 (1993))

- **Solution:** Take space into account (B₂ has to include source)
- See e.g.

M. Bleicher, "Phase space correlations of anti-deuterons in heavy ion collisions" PLB361 (1995)

 Mattiello, Sorge, Nagle, Ko, Aichelin, Heinz, about a dozen papers on clusters from 1995-1999

Time Evolution of Heavy Ion Collisions

Methods to calculate clusters

Wigner functions

- Projection on Hulthen wave function
- No free parameters
- No orthogonality of states

Coalescence

- Employ cut-off parameters
- E-by-E possible
- 2 free parameters

Cross sections

- Introduce explicit processes,
 e.g. p+n+π→d+π
- Dynamical treatment
- 'Fake' 3-body interactions

Thermal emission

- Put deuterons in partition sum
- No free parameter
- Why should a cluster be in?

Gyulassy, NPA402 (1983), Oliinychenko, PRC99 (2019), Butler, PR129 (1963), Mekijan PRL39 (1977)

Coalescence

- Coalescence assumes that that clusters are formed at the end of the kinetic scattering stage (cold/dilute system!)
- Different approaches: Momentum space coalescence and phase space coalescence
- Momentum space coalescence assumes small emission volume (neglecting spatial distribution)
 → does not work well for large systems
- Phase space (PS) coalescence treats both, the momentum distribution and the space distribution of protons and neutrons
- PS coalescence typically uses a $\Delta p \lesssim 285$ MeV and a $\Delta x \lesssim 3.5$ fm to define the deuteron state

Proton-proton collisions

Deuteron (anti-deuteron): ratios

Good description of pp by coalescence

Absolute yields

	$\sqrt{s_{NN}}$ (TeV)			ly	
	•		ALICE		UrQMD
d	0.9	(1.12 ± 0)	0.09 ± 0.09	$\times 10^{-4}$	$(0.96 \pm 0.05) \times 10^{-4}$
	2.76	(1.53 ± 0)	$0.05 \pm 0.13)$	$\times 10^{-4}$	$(1.47 \pm 0.06) \times 10^{-4}$
	7	(2.02 ± 0)	$0.02 \pm 0.17)$	$\times 10^{-4}$	$(2.05 \pm 0.09) \times 10^{-4}$
\overline{d}	0.9	(1.11 ± 0)	$0.10 \pm 0.09)$	$\times 10^{-4}$	$(1.00 \pm 0.05) \times 10^{-4}$
	2.76	(1.37 ± 0)	$0.04 \pm 0.12)$	$\times 10^{-4}$	$(1.55 \pm 0.07) \times 10^{-4}$
	7	(1.92 ± 0)	$0.02 \pm 0.15)$	$\times 10^{-4}$	$(2.22 \pm 0.09) \times 10^{-4}$

Absolute yields in line with ALICE data

ŝ

Proton-proton collisions

10^{-2} 0.9 TeV UrOMD p+p, deuterons, |y| < 0.52.76 TeV UrQMD (x4) 7 TeV UrQMD (x16) 0.9 TeV ALICE 2.76 TeV ALICE (x4) 10^{-3} 7 TeV ALICE (x16) $\frac{1}{2\pi p_T dy dp_T} \frac{d^2 N}{(c/GeV)^2}$ 10^{-6} 0.0 0.5 1.0 1.5 2.0 2.5 3.0 p_T (GeV/c)

Transverse momenta (deuterons)

Good description of pp by coalescence

Transverse momenta (anti-deuterons)

Good description of pp by coalescence

From small to large systems

Rapidity distributions indicate correct coalescence behavior

Also transverse expansion is well captured in the coalescence approach

1000

16

(V

Pb+Pb from 20 AGeV to 158 AGeV

Deuteron rapidity distributions well described over a broad range of energies

LHC results: Centrality dependence

 $dN_{ch}/d\eta$

Decrease of d/p ratio for very central collisions

 \rightarrow indication for larger freeze-out volume

Understanding the energy dependence

 $B_2 \sim d/p^2 \sim 1/Volume$

Decrease with V is observedWhy does it stop?

- Strong flow aligns the momenta, results in spacemom.space correlation

- Supresses volume effect at high energies

Direct check of volume scaling

deuteron/proton² x N_{ch}

Anti-deuteron/anti-proton² x N_{ch}

Volume scaling is observed at intermediate energies, even event-by-event and for deuterons AND anti-deuterons

Hillmann et al, e-Print: 2109.05972 [hep-ph]

Extension to tritons is straightforward

Rapidity - OK

Transverse momenta - OK

Energy dependence

- Generally good agreement of coalescence with data, except for highest energies (LHC)

- Hybrid and pure transport show similar results in overlap region

- Multifragmentation (hot coalescence is similar)

- Mainly reflects decrease of μ_{B} with increasing energy

Hillmann et al, e-Print: 2109.05972 [hep-ph]

Neutron density fluctuations?

 Triton to deuteron ratio might yield information on neutron density fluctuations

Sun et al, Phys.Lett.B 774 (2017) 103-107

$$\frac{N_{^{3}\mathrm{H}}N_{p}}{N_{\mathrm{d}}^{2}} = g \frac{1 + (1 + 2\alpha)\Delta n}{(1 + \alpha\Delta n)^{2}}$$
$$\approx g(1 + \Delta n).$$

g=0.29, α=p-n correlation

Canceling μ_B : B₃/(B₂)² ratios

None of the models provide a full description of the data

- However coalescence + multi-fragmentation seem to work below LHC energies

- Models dont see suggested density fluctuation peak!

Hillmann et al, e-Print: 2109.05972 [hep-ph]

Can we distinguish thermal emission from coalescence? → Anisotropic Flow

Simplified picture:

Position-space anisotropy → Momentum-space anisotropy

Real picture: Complicated state, mean free paths,...

by MADALus

Fourier expansion of the radial distribution! $\rightarrow v_n$

Adopted from H. Elfner

Can we distinguish thermal emission from coalescence? \rightarrow Scaling

NCQ scaling at high energies

- discovery of "magical factors" of 2 and 3 in measurements of spectra and the elliptic flow of mesons and baryonsat RHIC (Fries et al, 2003)
- Predicted v2 scaling in case of coalescence

$$v_2^h(P_T) = n \, v_2\left(\frac{1}{n}P_T\right)$$

→ Check scaling to prove coalescence

Fries et al, Phys.Rev. C68 (2003)

RHIC data

Scaling at LHC is a different story...

Can we distinguish thermal emission from coalescence? → Scaling

Higher order flow

- Also higher order flow works very well.
- Indication that correlations are propagated correctly
- Suggests "hard"
 (or momentum dependend)
 equation of state

Can we distinguish thermal emission from coalescence? \rightarrow Fluctuations

Au+Au at 2 AGeV

Thermal emission would result in Poisson fluctuations

→ Coalescence leads to wider (non-poisson) distributions Deviations from Poisson strongest at $^{\&}$ low energies (largest yield of deuterons)

Moments of distribution

Anti-deuterons

Does coalescence also work for more exotic states?

- Surprisingly good description of anti-deuteron yield
- Same parameters!!

Energy dependence of deuterons and anti-deuterons

Consistent picture over the whole energy range

Hyper and multi-strange matter DiBaryons Hypernuclei

Hybrid model (lines) vs. coalescence (symbols) See also Bastian, Blaschke, Roepke, et al, Eur.Phys.J. A52 (2016) 29

2 A GeV

 $\overline{}$ Au+Au

 $\cdots p + Au$

2

0

4

0

H, number of hyperons

Spectator hypermatter: A new road to hypernuclei Time evolution Hypernuclei

Significant amount of multi-hyper fragments

30

20 A GeV

 $\overline{} DCM$

5....

2

4

----- UrQMD⁻

Summary

- Coalescence works very well over a broad energy regime
- Results are similar to the obtained from thermal models and hybrid models

- True process is difficult to distinguish:
- → fluctuations and flow scaling can help

 Predictions for hypermatter show that FAIR and NICA are ideally positioned to explore this new kind of matter.