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PP REGENERATION 
IS NON-NEGLIGIBLE

NON-EQ EFFECTS 
ENHANCE PHOTON 

FLOW
-



MOTIVATION
Heavy-Ion Collisions create an Isolated Quantum System

which is 

Pre-equilibrium

Initially far away from any equilibrium

Self-interacting 

Expanding against the vacuum 

A system battling to thermalize against all odds. 

Stage

Ics

Hadronization

Qgp

Hadronic
RescatteringViscous Corrs.

τ = 0
τ

How does non-eq. 
dynamics affect
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SMASH
Simulating Many Accelerated Strongly-interacting Hadrons 

Hadronic transport approach

Particles propagate and collide on the basis of physical cross sections

Effective solution to Boltzmann equation: pμ ∂μ f + m ∂pμ
(Fμ f )μ = C [ f ]

Includes hadrons with masses up to ~ 2 GeV

Successfully studied bulk properties, as well as dilepton and 
strangeness production

Weil et al, Phys.Rev.C 94 (2016) 5, 054905   
Steinberg et al, Phys.Rev.C 99 (2019) 6, 064908  
Mohs et al,J.Phys.G 47 (2020) 6, 065101

Rose et al, J.Phys.G 48 (2021) 015005 
Steinberg et al, arXiv: 1912.09895 
Staudenmeier et al, Phys.Rev.C 98 (2018) 5, 054908 

*

https://smash-transport.github.io 
https://doi.org/10.5281/zenodo.3484711

SMASH 1.8
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DEGREES OF FREEDOM
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PP REGENERATION  
IN THE  
HADRONIC STAGE

_



PP DYNAMICS

Annihilation alleviated the problem

Dynamical regeneration was estimated to be 
relevant (Pan and Pratt)

Annihilation happens through many channels

HOWEVER…

Mismatch of the predicted (anti-)proton 
yields in thermal models

No transport code has implemented the back-reaction

Quark gluon

_

Andronic et al, Nucl.Phys.A 904-905 (2013) 535c-538c 
Y. Pan and S. Pratt,  (2014), arXiv:1210.1577  

pp̄ ↔ lπ l = 1,2,...
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PP ANNIHILATION
_

Annihilation happens through many channels pp̄ ↔ lπ l = 1,2,... a

b

1
2

n

2

Channels with high number of final state particles as expensive

Pn→m =
1

𝒮′ !
Δt

(Δ3x)n−1

1
n

∏
j=1

2Ej
∫ dΦm |Tn→m |2 ,

Expensive part is the back-reaction! 

Dover et al, Prog. Part. Nucl. Phys. 29, 87 (1992) 

10



PP ANNIHILATION
_

Annihilation happens through many channels pp̄ ↔ lπ l = 1,2,... a

b

1
2

n

2

Channels with high number of final state particles as expensive

Pn→m =
1

𝒮′ !
Δt

(Δ3x)n−1

1
n

∏
j=1

2Ej
∫ dΦm |Tn→m |2 ,

Expensive part is the back-reaction! 

pp̄ ↔ X

s [GeV ]

11



PP ANNIHILATION
_

Annihilation happens through many channels pp̄ ↔ lπ l = 1,2,... a

b

1
2

n

2

Channels with high number of final state particles as expensive

Pn→m =
1

𝒮′ !
Δt

(Δ3x)n−1

1
n

∏
j=1

2Ej
∫ dΦm |Tn→m |2 ,

Expensive part is the back-reaction! 

pp̄ ↔ X

s [GeV ]

We choose to implement l = 5
as an effective approach
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STOCHASTIC 
TREATMENT 

P5→2 = g′ 1 g′ 2

5

∏
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1
gf 2Ef
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(Δ3x)4
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1 , m ′ 2

2 )
Φ5

σ2→5

4πs

σ
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Infinite hadronic matter

Probability given by 

Faster equilibration

Computationally more expensive



STOCHASTIC 
TREATMENT 

RESONANCE  
TREATMENT 

P5→2 = g′ 1 g′ 2
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Can be stochastic or geometric 

Indirect, via resonances

pp̄ ↔ h1 ρ h1 ↔ ρ π ρ ↔ π π

N. Demir, Ph.D. thesis, Duke University (2010). 
Rose, et al, Phys. Rev. C 97, 055204 (2018) 

Slower equilibration
Infinite hadronic matter

Infinite hadronic matter

Probability given by 

Faster equilibration

Computationally more expensive



SO, SUMMARIZING

13

Backreaction  for pp annihilation was 
implemented 

Two different ways to perform it 

Now we have to run it in collisions

Many channels, choose n=5 as an effective approach



THE SMASH-VHLLE HYBRID

VHLLE (3+1) 
VISCOUS HYDRO

SMASH AS AN 
AFTERBURNER 

HADRON 
STAGE

QGP 
STAGE

INITIAL 
CONDITIONS

gluon

hadron

gaS

Moreland et al. Phys.Rev.C 92 (2015) 1, 011901 
Schenke et al Phys.Rev.C 82 (2010) 014903  
Weil et al Phys.Rev.C 94 (2016) 5, 054905  

Quark

t

pla

gluon
s ma

SMASH

VHLLE

SMASH

14
Hydro and transport illustrations by B.Schenke and J.Mohs

SMASH AS INITIAL 
CONDITIONS 



THE SMASH-VHLLE HYBRID
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Hydro and transport illustrations by B.Schenke and J.Mohs

SMASH AS INITIAL 
CONDITIONS 
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SOME  TECHNICAL DETAILS 

Averaged  initial conditions for 0-5%, 
20-30% and 40-50%

Viscous Hydro

Transition Temperature T=150 MeV 

EoS: HoTQCD+SMASH HRG

Systems: Au-Au at 39, 200 GeV

η/s = 0.1   and   ζ/s =0.05

Pb-Pb at 17.3 GeV 
and 2.76, 5.02 TeV
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COMPARISON
- Stochastic and resonance treatments present 
excellent agreement

- Agreement holds through the centrality and 
energy ranges
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COMPARISON
- Stochastic and resonance treatments present 
excellent agreement

- Agreement holds through the centrality and 
energy ranges

YIELDS
-Three scenarios 

With regeneration
No regeneration
Decay after particlization 

-Net decrease of the (anti-)proton yield is observed.  

-Regeneration is non-negligible and becomes 
more prominent for increasing collision energy.



PP AS A PROXY
_

The ratio of backward/forward reactions is 15-20%, stable in all systems.

pp annihilations to the number of (non-nucleon) baryon annihilations, stable in all systems

Use pp as a proxy to understand BB
_

_
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CONCLUSIONS
First afterburner calculation employing detailed balance for proton-antiproton annihilation  

We have shown the agreement between stochastic and resonance approaches

We have found the backward/forward reaction ratio to be of 15-20%, stable throughout a large range of 
collision energies and centralities  

Approach could be further improved by new channels

Dynamical interplay of annihilation and regeneration does play a non-negligible role for the 
proton yield, and has to be accounted for when modeling the system  
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LATE-TIME 
NON-EQUILIBRIUM 
PHOTONS



DIRECT PHOTONS

No strong interactions

Mean free path in medium > medium size

Photons escape, virtually unscathed 

GARCIA-MONTERO  -  PHOTONS FROM A HYBRID APPROACH  

Different sources through the evolution

AS A CONSEQUENCE…

HOWEVER. 

Photons not produced in decays

Photons are particularly sensitive to the 
evolution of the system

Quark gluon
plasma

t

Hadron


Gas

prompt 

photonS

pre-equilibriuM


 photonS

hadronic 
Rescattering and 
hadronic decayS

z  

Thermal 

photonS

The Standard Model of Heavy Ion Collisions
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DIRECT PHOTONS
GARCIA-MONTERO  -  PHOTONS FROM A HYBRID APPROACH  

“The inability to 
simultaneously 

describe both 0f the 
photon yield and 

anisotropy.” 

DIRECT PHOTON 
PUZZLE

HOWEVER, direct photons are not well understood.

Adam et al. (ALICE), Phys. Lett. B754 (2016)
Acharya et al. (ALICE), Phys.Lett.B 789 (2019) 19



HYDRO IS NOT ENOUGH

Photons created from thermal sources 
consistently fail to reproduce the data

GARCIA-MONTERO  -  PHOTONS FROM A HYBRID APPROACH  

Quark gluon
plasma

t

Hadron


Gas

prompt 

photonS

pre-equilibriuM


 photonS

Non-equilibrated

Radiation from 

hadronic matter

Thermal 

photonS

The Standard Model of Heavy Ion Collisions

Non-equilibrium effects seem to play an important 
role in the production of direct photons

In this talk: focus on photons from hadronic 
transport.

Hadrons fall out of equilibrium, produce 
photons out-of-equilibrium

 Late-time production carries potentially 
higher anisotropies
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THIS HYBRID APPROACH

T   ENTO R

MUSIC (3+1) 
IDEAL HYDRO

SMASH AS AN 
AFTERBURNER 

HADRON 
STAGE

QGP 
STAGE

INITIAL 
CONDITIONS

GARCIA-MONTERO  -  PHOTONS FROM A HYBRID APPROACH  

gluon

hadron

gaS

Moreland et al. Phys.Rev.C 92 (2015) 1, 011901 
Schenke et al Phys.Rev.C 82 (2010) 014903  
Weil et al Phys.Rev.C 94 (2016) 5, 054905  

Quark

t

T   ENTO R

pla

gluon
s ma

SMASH

MUSIC

Hydro and transport illustrations by B.Schenke and J.Mohs
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PHOTON SOURCES

Hydrodynamical - Thermal Rates

Transport - SMASH photons 

QGP: 
HRG:

Meson scattering

AMY, JHEP 0112 (2001) 009 
Turbide et al, Phys. Rev. C69, 
014903 (2004) 

Schäfer et al, Phys.Rev.D 99 (2019) 11, 114021 

THIS HYBRID APPROACH

T   ENTO R

SMASH AS AN 
AFTERBURNER 

HADRON 
STAGE

QGP 
STAGE

INITIAL 
CONDITIONS

GARCIA-MONTERO  -  PHOTONS FROM A HYBRID APPROACH  

SOME  TECHNICAL DETAILS 

Average (smooth) initial conditions 
for b = 5 fm 

Ideal Hydro

Transition Temperature T=150 MeV 

EoS: HoTQCD+SMASH HRG

MUSIC (3+1) 
IDEAL HYDRO
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Perturbative production - no backreaction

U(1) symmetric Chiral Effective Lagrangian for 
- Pseudoscalar mesons
- Vector mesons - Tensor resonances

- Axial vector mesons

Non-equilibrium production of photons in hadronic matter 

Photons are sampled when underlying meson scattering happens

Photon kinematic properties are sampled from 
differential cross-section

Main contributions: meson-bremsstrahlung and 2-to-2 
scattering processes

PHOTONS FROM HADRONIC TRANSPORT
GARCIA-MONTERO  -  PHOTONS FROM A HYBRID APPROACH  

[Ogawa et al,Prog. Theor. Phys. Suppl, 1967.] 
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PHOTONS FROM HADRONIC TRANSPORT
MESON BREMSSTRAHLUNG

π

π

π

π

l

l

l
l

σ,ρ,f γ

Photon production from pion 2-to-3 process. Mediated by σ,ρ 
and f resonances

Total cross-section

Comparison to thermal rate

Get differential and total cross section from the Chiral Lagrangian 

We use   to sample the direction and momentum of photonsdσ
dkdθ

COMPARISON TO THERMAL RATES

Compute Thermal photon rates: 4-volume density of photons

SMASH setup: thermal matter with periodic box

Fair agreement to known parametrizations

GARCIA-MONTERO  -  PHOTONS FROM A HYBRID APPROACH  

Eggers et al, Phys. Rev., D (1996)  
Liu and Rapp. Nucl. Phys., A (2007).  
Linnyk et al. Phys.Rev. C (2015) 
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PHOTONS FROM HADRONIC TRANSPORT
2-TO-2 SCATTERINGS

Photon production from pion 2-to-2 process.

Get differential and total cross section from the Chiral Lagrangian

COMPARISON TO THERMAL RATES

Compute Thermal photon rates: 4-volume density of photons

SMASH setup: π-ρ thermal matter with periodic box. 

Very good agreement to known parametrization

π

π,ρ

γ
π,ρ,a 1

π,ρ

l

l

l
l

ω

ρ π

l

l

l
l

π γ

Total cross-section (some channels)

Comparison to thermal rate (some channels)

We use   to sample the direction and momentum of photonsdσ
dt

GARCIA-MONTERO  -  PHOTONS FROM A HYBRID APPROACH  

[Schäfer et al, Phys.Rev.D 99 (2019) 11, 114021] 25



This study:

Au-Au 200 GeV 

b=5 fm            ~ 10-20%  

 y=0

GARCIA-MONTERO  -  PHOTONS FROM A HYBRID APPROACH  

LATE-TIME NON-EQUILIBRIUM PHOTONS

Check hadronic observables

Particlization at T=150 MeV 

H
A
D
R
O
N
S
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This study:

Au-Au 200 GeV, Pb-Pb 2.76 TeV 

b=5 fm            ~ 10-20%  

Computed yield and anisotropy of photons. For 
v2 we used 

v2(p⊥) =
⟨p2

x − p2
y ⟩

⟨p2
⊥⟩

LATE-TIME NON-EQUILIBRIUM PHOTONS

Photon anisotropies are measured relative to 
the hadronic event plane 

Check hadronic observables

Particlization at T=150 MeV 

P
H
O
T
O
N
S
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HYDRO VS. TRANSPORT

NON-EQUILIBRIUM EFFECTS 
ENHANCE PHOTON ANISOTROPIES

Photons from SMASH (transport)   
vs. MUSIC (Hydro, Hadronic) 

Hydro Photons  produced using thermal rates:

Note: Total is a weighted average! 

Comparison

Eq. vs Non-Eq. Effects 
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QGP VS. HADRONIC MATTER
[RHIC]

28



QGP VS. HADRONIC MATTER
[LHC]
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QGP VS. HADRONIC MATTER
[LHC]

HADRONIC STAGE IS RELEVANT! 
NON-EQ. EFFECTS SHOULD BE 

ACCOUNTED FOR.
30



CONCLUSIONS

First full hybrid calculation for photon production at high beam energies

Non-trivial to resolve the discrepancies in the photon observables

Late time non-equilibrium effects are significant for anisotropy generation

Run realistic event-by-event case to compare to data

31

Approach could be further improved by new channels (Kaon, Baryonic…)



BACKUP  
SLIDE



SMASH
SMASH can perform interactions based on two collision 
criteria

Geometric criterion 
Decision of whether collisions happens is based on the 
geometric interpretation of the cross section 

Weil et al, Phys.Rev.C 94 (2016) 5, 054905   
Steinberg et al, Phys.Rev.C 99 (2019) 6, 064908  
Mohs et al,J.Phys.G 47 (2020) 6, 065101

Rose et al, J.Phys.G 48 (2021) 015005 
Steinberg et al, arXiv: 1912.09895 
Staudenmeier et al, Phys.Rev.C 98 (2018) 5, 054908 

*

d⊥ < dint =
σ
π

Criterion is only available for 2-to-2 collisions 

Stochastic criterion 

Pn→m =
1

𝒮′ !
Δt

(Δ3x)n−1

1
n

∏
j=1

2Ej
∫ dΦm |Tn→m |2 ,

Defines a probability for a reaction of a given particle set

Criterion available for all n,m.

1-to-3, 2-to-3 and 2-to-5 reactions already implemented


