

Net-proton number fluctuations in partial chemical equilibrium

Based on: B. Tomasik, P. Hillmann, and M. Bleicher, (2021), arXiv:2107.03830 [nucl-th]

Paula Hillmann, Strong Workshop, Herssonisos, Crete, 05/10/21

Overview

- Motivation
- Hadron resonance gas in partial chemical equilibrium
- Derivation of proton number fluctuations
- Results
- Summary

Motivation

Motivation QCD Phase Diagram and Critical Point

- Search for phase-transition and critical point in QCD phase diagram
- Theoretical calculations of net-Baryon number fluctuations show a strong scaling with the correlation lengths Y. Hatta , et al., PRD 67, 014028 (2003)
- Higher order cumulants are sensitive to the CP where the correlation
 lengths diverges
 Y. Hatta , et al., PRD 67, 014028 (2003)

Picture: P. Bicudo, et al., arXiv: 1102.5531 [hep-lat]

Motivation **Connecting experiment and theory**

- STAR data show a strong increase of t net-p kurtosis at low energies M. Abdallah et al. [STAR], arXiv:2101.12413 [nucl-ex]
- Possible experimental impacts on the fluctuations:
 - Cluster production, e.g. d and t Z. Feckova, et al., PRC 92, no.6, 064908 (2015), T. Neidig, et al., arXiv: 2108.131
 - Detector efficiency and mass cuts S. He, et al., PLB 774, 623-629 (2017), A. Bazavov ,et al., PRD 101, no.7, 074502 (2020)
 - Volume might be too small for grand-canonical equilibrium H. Bebie, et al, NPB 378, 95-128 (1992), T. Hirano, et al., PRC 66, 054905 (2002), R. Rapp, PRC 66, 017901 (2002)
 - Net-p as proxy for net-B Y. Hatta, et al., PRL 91, M. Kitazawa ,et al., PRC 86, 024904 (2012)

Picture taken from M. Abdallah et al. [STAR], arXiv:2101.12413 [nucl-ex], CBWC: centrality bin width correction

Motivation Impact of collision stages

- Chemical freeze-out: end of inelastic scattering
- Between the freeze-out stages: Assumption of Partial Chemical Equilibrium (PCE) effective numbers of long living hadrons fixed at the values they had at the chemical freeze-out
- Kinetic freeze-out: end of interaction
- Different freeze-out temperatures at chemical and kinetic FO I. Melo et al, JPG 47, no.4, 045107 (2020)
- How is the temperature dependence of the net-p cumulants after chemical freezeout?

Hadron resonance gas in partial chemical equilibrium

Hadron resonance gas in partial chemical equilibrium Starting point

- HRG calculations for central Au+Au reactions at RHIC BES
- Grand-canonical HRG with "stable" hadrons (pions, nucleons, kaons, …) and resonances
- Starting point: Strangeness neutrality and chemical freeze-out Starting values for different energies
- Partition sum: $\ln \mathcal{Z} = \sum_{i} (\pm 1) \frac{g_r V}{2\pi^2}$ $\times \int_0^\infty dk \, k^2 \, \ln \left(1 \pm \gamma_s^{|S_i|} e^{\mu_i/T} e^{-\gamma_s} \right) dk \, k^2 \, \ln \left(1 \pm \gamma_s^{|S_i|} e^{\mu_i/T} e^{-\gamma_s} \right)$

Data: L. Adamczyk et al. [STAR], PRC 96, no.4, 044904 (2017) and M. Abdallah et al. [STAR], arXiv:2101.12413 [nucl-ex]

$\sqrt{s_{NN}} { m [GeV]}$	$T_{\rm fo}~[{ m MeV}]$	$\mu_B [{ m MeV}]$	$\mu_S [{ m MeV}]$	γ_s
7.7	144.3	398.2	89.5	0.95
11.5	149.4	287.3	64.5	0.92
14.5	151.6	264.0	58.1	0.94
19.6	153.9	187.9	43.2	0.96
27.0	155.0	144.4	33.5	0.98
39.0	156.4	103.2	24.5	0.94
54.4	160.0	83.0	18.7	0.94
62.4	160.3	69.8	16.7	0.86
200	164.3	28.4	5.6	0.93

$$\sqrt{m_i + k^2}/T$$

8

Hadron resonance gas in partial chemical equilibrium Temperature dependence of the **Temperature evolution** proton and anti-proton

- Partition sum: $\ln \mathcal{Z} = \sum_{R} \frac{g_r V}{2\pi^2} m_R^2 T \sum_{i=1}^{\infty} \frac{(\mp 1)^{j-1}}{j^2} e^{j\mu t}$
- Each stable species has its own chemical potential
- PCE condition:

$$\frac{\left\langle N_h^{\text{eff}}(T) \right\rangle_c}{S(T)} = \left. \frac{\left\langle N_h^{\text{eff}}(T) \right\rangle_c}{S(T)} \right|_{T=T_{\text{fo}}}$$

- with Entropy: $S = \sum_{R} \frac{VP_R + E_R \langle N_R \rangle_c \mu_R}{T}$
- Resonance potential: $\mu_R = \sum_{h} p_{R \to h} \mu_h$
- Different impacts on the proton number: Direct proton production and resonance decays into protons (sometimes different decay channels into p)

M. Nahrgang, et al., EPJ C 75, no.12, 573 (2015)

chemical potentials:

$${}^{\mu_R/T}K_2\left(rac{jm_R}{T}
ight)$$

Derivation of proton number cumulants

Derivation of proton number fluctuations Generating function

 Assuming binomial probability to produce N protons by the decay of **Resonance R:**

$$P(N) = \sum_{N_R=N}^{\infty} P_R(N_R) P(N; N_R) \quad \text{with} \quad P(N; N_R) = \binom{N_R}{N} p_R^N (1 - p_R)^{N_R - N_R}$$

• Plugging this in the generating function for a fixed resonance number:

$$K_b(i\xi) = \ln\left\{\sum_{N=0}^{N_R} e^{i\xi N} \begin{pmatrix} N_R \\ N \end{pmatrix} p_R^N (1-p_R)^{N_R-N} \right\} = \ln\left(e^{i\xi} p_R + (1-p_R)\right)^{N_R}$$

- Final generating function with sum over the resonance number: $K(i\xi) = \ln\left\{\sum_{N_R=0}^{\infty} \sum_{N=0}^{N_R} e^{i\xi N} P_R(N_R) P(N;N_R)\right\} = \ln\left\{\sum_{N_R=0}^{\infty} P_R(N_R) P(N;N_R)\right\}$
- Second sum is known: $K(i\xi) = \sum_{R} \ln \left\{ \sum_{N_{F}} \right\}$

$$P_R(N_R)\sum_{N=0}^{N_R}e^{i\xi N}P(N;N_R)\bigg\}$$

$$\sum_{R=0}^{\infty} P_R(N_R) \left(e^{i\xi} p_R + (1-p_R) \right)^{N_R} \right\}$$

Derivation of proton number cumulants Derivatives of generating function

- Cumulant of order I: $\left\langle (\Delta N)^l \right\rangle_c = \frac{\mathrm{d}^l K(i\xi)}{\mathrm{d}(i\xi)^l} \Big|_{\xi=0}$
- First to forth order proton number cumulant:

$$\langle N_p \rangle_c = \sum_R p_R \langle N_R \rangle_c$$

$$\left\langle (\Delta N_p)^2 \right\rangle_c = \sum_R \left[p_R^2 \left\langle (\Delta N_R)^2 \right\rangle_c + p_R (1 - p_R) \left\langle N_R \right\rangle_c \right]$$

$$\left\langle (\Delta N_p)^3 \right\rangle_c = \sum_R \left[p_R^3 \left\langle (\Delta N_R)^3 \right\rangle_c + 3p_R^2 (1 - p_R) \left\langle (\Delta N_R)^2 \right\rangle_c + \left\langle (\Delta N_p)^4 \right\rangle_c \right]$$

$$\left\langle (\Delta N_p)^4 \right\rangle_c = \sum_R \left[p_R^4 \left\langle (\Delta N_R)^4 \right\rangle_c + 6p_R^3 (1 - p_R) \left\langle (\Delta N_R)^3 \right\rangle_c + 0 \right]$$

- with: $\left\langle \left(\Delta N_R\right)^l \right\rangle_c = \frac{\partial^l \ln \mathcal{Z}_R}{\partial (\mu_R/T)^l} = \frac{g_R V}{2\pi^2} m_R^2 T \times \sum_{i=1}^{\infty} (\mp I)^i$
- Net-p cumulant: $\left\langle \left(\Delta N_{p-\bar{p}}\right)^l \right\rangle_c = \left\langle \left(\Delta N_p\right)^l \right\rangle_c$

 $\frac{\xi}{l}\Big|_{\xi=0}$

$$+ p_R (1 - p_R) (1 - 2p_R) \langle N_R \rangle_c \Big]$$

$$- p_R^2 (1 - p_R) (7 - 11p_R) \left\langle (\Delta N_R)^2 \right\rangle_c$$

$$= 1)^{j-1} j^{l-2} e^{j\mu_R/T} K_2 \left(\frac{jm_R}{T} \right)$$

$$+ (-1)^l \left\langle (\Delta N_{\bar{p}})^l \right\rangle_c$$

12

Derivation of proton number cumulants Cumulant ratios

• The cumulant ratios are given as:

with:

$$\sigma^{2} = \left\langle (\Delta N)^{2} \right\rangle_{c}$$

$$S = \frac{\left\langle (\Delta N)^{3} \right\rangle_{c}}{\left\langle (\Delta N)^{2} \right\rangle_{c}^{3/2}}$$

$$\kappa = \frac{\left\langle (\Delta N)^{4} \right\rangle_{c}}{\left\langle (\Delta N)^{2} \right\rangle_{c}^{2}}$$

$$S^{H} = \frac{\left\langle (\Delta N)^{5} \right\rangle_{c}}{\left\langle (\Delta N)^{2} \right\rangle_{c}^{5/2}}$$

$$\kappa^{H} = \frac{\left\langle (\Delta N)^{6} \right\rangle_{c}}{\left\langle (\Delta N)^{6} \right\rangle_{c}}$$

13

Results

Results **Net-p fluctuations**

• Chemical fo to kinetic fo: from right to left

To remember:

$$\frac{\chi_2}{\chi_1} = \frac{\left\langle (\Delta N)^2 \right\rangle_c}{\langle N \rangle_c} = \frac{\sigma^2}{M} \qquad \frac{\chi_3}{\chi_2} = \frac{\left\langle (\Delta N)^3 \right\rangle_c}{\left\langle (\Delta N)^2 \right\rangle_c} = S\sigma$$
$$\frac{\chi_4}{\chi_2} = \frac{\left\langle (\Delta N)^4 \right\rangle_c}{\left\langle (\Delta N)^2 \right\rangle_c} = \kappa\sigma^2 \qquad \frac{\chi_5}{\chi_1} = \frac{\left\langle (\Delta N)^5 \right\rangle_c}{\langle N \rangle_c} = \frac{S^H \sigma^5}{M}$$
$$\frac{\chi_5}{\chi_2} = \frac{\left\langle (\Delta N)^5 \right\rangle_c}{\left\langle (\Delta N)^2 \right\rangle_c} = S^H \sigma^3 \qquad \frac{\chi_6}{\chi_2} = \frac{\left\langle (\Delta N)^6 \right\rangle_c}{\langle N \rangle_c} = \kappa^H \sigma^4$$

Net-p number cumulant-ratios as function of temperature for central Au+Au reactions at various beam-energies

15

Results

Explanation:

• Flatness of the curves:

•
$$\left\langle \left(\Delta N_p\right)^l \right\rangle_c = \sum_R p_R \left\langle N_R \right\rangle_c = \left\langle N_p \right\rangle_c$$

Remember: mean is fixed, other cumulants show weak temperature dependence

• Difference in even-to-even and even-to-odd ratios:

$$\left\langle \left(\Delta N_{p-\bar{p}}\right)^l \right\rangle_c = \left\langle \left(\Delta N_p\right)^l \right\rangle_c + (-1)^l \left\langle \left(\Delta N_{\bar{p}}\right)^l \right\rangle_c$$

let us assume, that all resonance cumulants are the same as the mean:

Results **Energy dependence**

- Difference between chemical and kinetic FO only small (biggest difference about 5%)
- Biggest differences for highest beam energy and higher order cumulant ratios

$$\begin{split} \frac{\chi_2}{\chi_1} &= \frac{\left\langle (\Delta N)^2 \right\rangle_c}{\langle N \rangle_c} = \frac{\sigma^2}{M} \qquad \frac{\chi_3}{\chi_2} = \frac{\left\langle (\Delta N)^3 \right\rangle_c}{\left\langle (\Delta N)^2 \right\rangle_c} = S\sigma \\ \frac{\chi_4}{\chi_2} &= \frac{\left\langle (\Delta N)^4 \right\rangle_c}{\left\langle (\Delta N)^2 \right\rangle_c} = \kappa\sigma^2 \qquad \frac{\chi_5}{\chi_1} = \frac{\left\langle (\Delta N)^5 \right\rangle_c}{\langle N \rangle_c} = \frac{S^H \sigma^5}{M} \\ \frac{\chi_5}{\chi_2} &= \frac{\left\langle (\Delta N)^5 \right\rangle_c}{\left\langle (\Delta N)^2 \right\rangle_c} = S^H \sigma^3 \qquad \frac{\chi_6}{\chi_2} = \frac{\left\langle (\Delta N)^6 \right\rangle_c}{\langle N \rangle_c} = \kappa^H \sigma^4 \end{split}$$

Results Impact of mass cuts

- Different mass cuts for the resonance masses applied to the HRG
- Impact is visible: The lower the allowed mass, the lower the kurtosis
- Effect similar for both energies
- Resonance decays are the strongest contributors to the the net-p cumulants

Results **Net-B fluctuations**

• Formula:

$$\left\langle \left(\Delta B\right)^{l}\right\rangle_{c} = \sum_{R} B_{R}^{l} \left\langle \left(\Delta N_{R}\right)^{l}\right\rangle_{c}$$

- Similar behavior like for net-p
- Net-p is a good proxy

To remember:

$$\frac{\chi_2}{\chi_1} = \frac{\left\langle (\Delta N)^2 \right\rangle_c}{\langle N \rangle_c} = \frac{\sigma^2}{M} \qquad \frac{\chi_3}{\chi_2} = \frac{\left\langle (\Delta N)^3 \right\rangle_c}{\left\langle (\Delta N)^2 \right\rangle_c} = S\sigma$$
$$\frac{\chi_4}{\chi_2} = \frac{\left\langle (\Delta N)^4 \right\rangle_c}{\left\langle (\Delta N)^2 \right\rangle_c} = \kappa\sigma^2 \qquad \frac{\chi_5}{\chi_1} = \frac{\left\langle (\Delta N)^5 \right\rangle_c}{\langle N \rangle_c} = \frac{S^H \sigma^5}{M}$$
$$\frac{\chi_5}{\chi_2} = \frac{\left\langle (\Delta N)^5 \right\rangle_c}{\left\langle (\Delta N)^2 \right\rangle_c} = S^H \sigma^3 \qquad \frac{\chi_6}{\chi_2} = \frac{\left\langle (\Delta N)^6 \right\rangle_c}{\langle N \rangle_c} = \kappa^H \sigma^4$$

Summary

- Grand-canonical hadron resonance gas model in partial chemical equilibrium was used to study the temperature dependence of net-p and net-B fluctuations after chemical freeze-out up to kinetic freeze-out
- Only weak temperature dependence was observed, Net-p and net-B cumulant ratios were similar
- Mass cut of the resonances has a small impact on the results
- Effects like e.g. cluster production haven't been included in the model

Backup Generating function

 $K_{b}(i\xi) = \ln \left\{ \sum_{N=0}^{N_{R}} e^{i\xi N} \begin{pmatrix} N_{R} \\ N \end{pmatrix} p_{R}^{N} (1-p_{R})^{N_{R}-N} \right\} \qquad \langle (\Delta A) = \ln \left\{ \sum_{N=0}^{N_{R}} \begin{pmatrix} N_{R} \\ N \end{pmatrix} e^{i\xi N} p_{R}^{N} (1-p_{R})^{N_{R}-N} \right\} \qquad \langle (\Delta A) = \ln \left\{ \sum_{N=0}^{N_{R}} \begin{pmatrix} N_{R} \\ N \end{pmatrix} (e^{i\xi} p_{R})^{N} (1-p_{R})^{N_{R}-N} \right\}$

$$\begin{split} \langle N_{p} \rangle_{c} &= \sum_{R} p_{R} \langle N_{R} \rangle_{c} \\ &\left\langle (\Delta N_{p})^{2} \right\rangle_{c} = \sum_{R} \left[p_{R}^{2} \left\langle (\Delta N_{R})^{2} \right\rangle_{c} + p_{R} (1 - p_{R}) \left\langle N_{R} \right\rangle_{c} \right] , \\ &\left\langle (\Delta N_{p})^{3} \right\rangle_{c} = \sum_{R} \left[p_{R}^{3} \left\langle (\Delta N_{R})^{3} \right\rangle_{c} + 3p_{R}^{2} (1 - p_{R}) \left\langle (\Delta N_{R})^{2} \right\rangle_{c} + p_{R} (1 - p_{R}) (1 - 2p_{R}) \left\langle N_{R} \right\rangle_{c} \right] , \\ &\left\langle (\Delta N_{p})^{4} \right\rangle_{c} = \sum_{R} \left[p_{R}^{4} \left\langle (\Delta N_{R})^{4} \right\rangle_{c} + 6p_{R}^{3} (1 - p_{R}) \left\langle (\Delta N_{R})^{3} \right\rangle_{c} + p_{R}^{2} (1 - p_{R}) (7 - 11p_{R}) \left\langle (\Delta N_{R})^{2} \right\rangle_{c} \\ &+ p_{R} (1 - p_{R}) (1 - 6p_{R} + 6p_{R}^{2}) \left\langle N_{R} \right\rangle_{c} \right] , \\ &\left\langle (\Delta N_{p})^{5} \right\rangle_{c} = \sum_{R} \left[p_{R}^{5} \left\langle (\Delta N_{R})^{5} \right\rangle_{c} + 10p_{R}^{4} (1 - p_{R}) \left\langle (\Delta N_{R})^{4} \right\rangle_{c} + 5p_{R}^{3} (1 - p_{R}) (5 - 7p_{R}) \left\langle (\Delta N_{R})^{2} \right\rangle_{c} \\ &+ 5p_{R}^{2} (1 - p_{R}) (10p_{R}^{2} - 12p_{R} + 3) \left\langle (\Delta N_{R})^{2} \right\rangle_{c} \\ &+ p_{R} (1 - p_{R}) (1 - 2p_{R}) (12p_{R}^{2} - 12p_{R} + 1) \left\langle N_{R} \right\rangle_{c} \right] , \\ &\left\langle (\Delta N_{p})^{6} \right\rangle_{c} = \sum_{R} \left[p_{R}^{6} \left\langle (\Delta N_{R})^{6} \right\rangle_{c} + 15p_{R}^{5} (1 - p_{R}) \left\langle (\Delta N_{R})^{5} \right\rangle_{c} + 5p_{R}^{4} (1 - p_{R}) (13 - 17p_{R}) \left\langle (\Delta N_{R})^{4} \right\rangle_{c} \\ &+ 15p_{R}^{3} (1 - p_{R}) (15p_{R}^{2} - 20p_{R} + 6) \left\langle (\Delta N_{R})^{3} \right\rangle_{c} \\ &- p_{R}^{2} (1 - p_{R}) (274p_{R}^{3} - 476p_{R}^{2} + 239p_{R} - 31) \left\langle (\Delta N_{R})^{2} \right\rangle_{c} \\ &+ p_{R} (1 - p_{R}) (120p_{R}^{4} - 240p_{R}^{3} + 150p_{R}^{2} - 30p_{R} + 1) \left\langle N_{R} \right\rangle_{c} \right] , \end{split}$$

Backup HRG Properties

$$\begin{split} P_R &= \frac{T \ln \mathcal{Z}_R}{V}, \\ E_R &= \frac{g_R V}{2\pi^2} \int_0^\infty dk \, k^2 \sqrt{k^2 + m_R^2} \\ &\times \left(\exp\left(\frac{\sqrt{k^2 + m_R^2} - \mu_R}{T}\right) \pm 1 \right)^{-1} \end{split}$$