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Introduction

I at LHC, the ALICE collaboration measured the yields of light
nuclei (Jaroslav Adam et al., Phys. Rev. C, 93(2):024917,
2016)

(a) Hadron abundances and
statistical hadronization model
predictions (A. Andronic et.al.,
Nature 561, 321 (2018))

(b) Space-time diagram of a HIC
(P. Braun-Munzinger et.al., Nucl.
Phys. A, 987:144201, 2019)



Introduction

I the binding energies of light nuclei are much smaller then
temperature of the environment

I the nucleosynthesis in heavy-ion collisions can be described by
the Saha equation ( Volodymyr Vovchenko et. al., Phys. Lett.
B, 800:135131, 2020)

I we use the principle of detailed balance to construct rate
equations for the light nuclei

I the important reactions are of the following type
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Introduction
I As an example, consider ρ↔ π + π
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I in equilibrium, the lhs is zero, thus we have〈
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I by introducing fugacities λi = e
µi (T )

T = Ni (T )
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, we finaly get
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Introduction

I we first have to determine the averaged cross sections, the
volume and the multiplicities in chemical equilibrium in
dependence of T

I particles: nucleons, the light nuclei and their corresponding
anti-particles, π, ρ, ω, K , K ∗, ∆, Λ, Σ, Ξ and Ω

I the catalysing particles X are just π and K , because they will
have the largest contribution ( large abundances and cross
sections)



Thermal averaged cross sections

I average over Boltzmann distribution:

〈
σ

A+X→a·N+X
vrel

〉
=

∫∫ d~p3
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I the known cross sections are taken from the PDG (Particle
Data Group and P A et. al., Progress of Theoretical and
Experimental Physics, 2020(8), 082020)

I we are interested in the case were the nuclei are splited in
their nucleonic constituents → inelastic cross sections



Thermal averaged cross sections

I as an example the results for π+ + d scattering:
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Figure: Total (blue) and inelastic (orange) thermal cross section for
π+ + d scattering as function of the tempertaure T .



Thermal Model and Saha equation

I it is usefull to consider a simplified (analytical) example

I system is dominated by effectively massles pions

I relation between T and V (isentropic expansion): V ∝ T−3

I for all particles without the pions the non-relativistic
approximation is used:

Ni (T ) ≈ gi

(miT

2π

) 3
2
e−mi/TλiV

I here λi are the fugacities for µi

I a simplified expression for the µi ’s by using Ni (Tc ) = Ni (T )
and µi (Tc ) = 0 ( Volodymyr Vovchenko et. al., Phys. Lett.
B, 800:135131, 2020):
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Thermal Model and Saha equation

I now we are able to calculate the normalised ratio NA(T )
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I here we introduced the binding energy of a nucleus
BA = a ·mN −mA



Thermal Model and Saha equation

I this result is different to the standard thermal model result
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I the major difference is clearly the value in the exponential:
2MeV ≈ BA � mA ≈ 1000MeV

I we see, that the exponential behaviour is strongly weakened



Thermal Model and Saha equation

I to gain the full solution (HRG in PCE) we need to consider
also the contributions of the other particles ( Volodymyr
Vovchenko et. al., Phys. Lett. B, 800:135131, 2020)

Seff (Tc ) = V
∑

j∈all particles

sj (T , µ̃j , µB , µS )

Ni eff (Tc ) = V
∑

j∈all particles

〈
ni

〉
j
nj (T , µ̃j , µB , µS )
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∑
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0 = V
∑
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Thermal Model and Saha equation

I
〈
ni

〉
j

is the averaged number of stable hadrons i which came

from the decay(-chain) of hadron j

I the chemical potentials are given as

µ̃j =
∑

i∈stable

〈
ni

〉
j
µi ; j ∈ all particles

I by solving the set of non-linear equations we will get V (T ),
µi (T ), µB(T ) and µS (T )

I all relativistic Boltzmann particles have their ”normal”
degeneracy factors with exception the ∆-baryon ( g eff

∆ = 2g∆ )

I fit model to experimental data (ALICE 0− 10% central Pb-Pb
(2,72 TeV ) e.g. J. Adam et. a., Physics Letters B,
754:360372, 2016) to obtain: V (Tc ) = 4017.5 fm3,
µB(Tc ) = 2.98MeV and µS (Tc ) = 0.39MeV at
Tc = 155MeV



Thermal Model and Saha equation

Figure: The µi ’s of the as stable considered hadrons in dependence of T.



Thermal Model and Saha equation

Figure: The volume ratio in dependence of T.



Solving the rate equations



Solving the rate equations

I for all light nuclei up to He4 rate equations has been
implemented, but also the decays of ρ, ω, K ∗ and ∆ has been
considered

I we have just related the volume and temperature, but the
system contains ODE’s in time

I here we consider a parametrisation V (t) (Yinghua Pan and
Scott Pratt, Phys. Rev. C, 89(4):044911, 2014):

V (t)

Vch
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t

tch

t2
⊥ + t2
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⊥ + t2
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; t⊥ = 6.5
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Solving the rate equations
I first we want to look at the rates:

0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15
T [GeV]

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

[G
eV

]

d +
d + K+

d + K

Figure: The rates α =
〈vrelσtot〉Neq

X

V in a fixed volume V = 4000 fm3

for different temperatures (but fixed during the equilibration of the
system) for different deuteron break up reactions



Solving the rate equations
I now we solve the full set of equations and look at the

evolution of the deuteron number:
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Figure: Normalised particle number of deuterons to the value at
Tc = 155MeV for g eff

∆ = 2g∆



Solving the rate equations
I now we want to check how fast the system equilibrates when

starting out of equilibrium:
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∆ = 2g∆.



Solving the rate equations
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Figure: Solid lines represent the results of the rate equations, while
dashed curves show the result of the HRG in PCE. The colored
bands represent the experimental data (ALICE)



Effect of the N + N 
 5π reaction

I a big advantage of the rate equation approach is the
possibility of the annihilation of stable hadrons e.g. nucleons
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Effect of the N + N 
 5π reaction
I the averaged cross section is about 50mb for p + p scattering

I this type of reaction exlicitly violates the conservation of
stable hadrons, but the net baryon number is still conserved
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Figure: Normalised particle number of deuterons to the value at
Tc = 155MeV and g eff

∆ = 2g∆.



Conclusions and Outlook

I both approaches are in great agreement with each other and
also in the error range of the experimental data

I the same procedure could be done for RHIC or SPS energies

I the annihilation of nucleon and anti-nucleon into five pions
only leads to a 4− 5% decrease in the effective nucleon
number

I under-occupation in the nucleons leads to a suppression of the
light nuclei



Conclusions and Outlook

I calculations also support earlier assumptions, that the nuclei
do not need to be formed at the chemical freeze-out

I this approach neglects the formation time of the nuclei

I a quantum mechanical description of creation and decay of
bound states (the nuclei) in an open thermal system (fireball)
is needed
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