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basic assumption: system is described by a (grand) canonical
ensemble of non-interacting fermions and bosons in thermal and chemical equilibrium
= thermal hadron gas at freeze-out with common T and pg
[ - : no dynamical information]
® Hydrodynamical models:
basic assumption: conservation laws + equation of state (EoS);
assumption of local thermal and chemical equilibrium
- Interactions are ,hidden‘ in properties of the fluid described by transport coefficients

(shear and bulk viscosity n, &, ..), which is ‘input’ for the hydro models
[ - : simplified dynamics]

® Microscopic transport models:

based on transport theory of relativistic quantum many-body systems

- Explicitly account for the interactions of all degrees of freedom (hadrons and partons)
in terms of cross sections and potentials

- Provide aunique dynamical description of strongly interaction matter
in- and out-off equilibrium:

- In-equilibrium: transport coefficients are calculated in a box — controled by IQCD

- Nonequilibrium dynamics — controled by HIC

Actual solutions: Monte Carlo simulations
[+ : full dynamics | -: very complicated]



_'*' Dynamical description of heavy-ion collisions

The goal: to study the properties of strongly interacting matter under
extreme conditions from a microscopic point of view

Realization: dynamical many-body transport approaches

Plan:

1) Dynamical transport models (nonrelativistic formulation):
from the Schrédinger equation to Vlasov equation of motion = BUU EoM

2) Density-matrix formalism: Correlation dynamics

3) Quantum field theory = Kadanoff-Baym dynamics
=» generalized off-shell transport equations

4) Transport models for HIC



1. From the Schrodinger equation to
the Vliasov equation of motion



Quantum mechanical description of the many-body system

Dynamics of heavy-ion collisions is a many-body problem!

Schrodinger equation for the system of N particles in three dimensions:

nonrelativistic
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Hartree-Fock equation

Time-dependent Hartree-Fock equation for a single particle i:

ih2 (5= 0

Single-particle Hartree-Fock Hamiltonian operator: h=T+U, - U,

®Hartree term: [/, = > Id3r'y/:(i7',t)V(F— r')y(r',y) T = —iﬁf
i(occ) 2m
self-generated local mean-field potential
o . A * —_
Fock term: U, = Z y/i(’f:r’t) Vﬁ;,rr,awiﬁ:,t)

i<N
non-local mean-field exchange potential (quantum statistics)

- Equation-of—motion (EoM): propagation of particles in the self-generated mean-field:

in— w,(;t) (T09+ Uy (70) wF)- | & U7y ')

local potential
P We'll neglected the exchange (Fock) term

Note: TDHF approximation describes only the interactions of particles
with the time-dependent mean-field !

In order to describe the collisions between the individual(!) particles, one has to go
beyond the mean-field level ! (see Part 2: Correlation dynamics)



Single particle density matrix

O Introduce the single particle density matrix:

p(FF )= wp(F (T t)
ﬂOCC

Thus, the single-particle Hartree-Fock Hamiltonian operator can be written as

h(F,t):T(r)+Zjd3r'V(r-r',t)p(r',r',t)=T(r)+U(r,t)
Boce local potential

 Consider equation:
‘h%wa<f,t)=h(r,t)wa(f,t> @

Yo (7', 1) *(1): 3
V/Z(F',t)iha—twa(ﬂthV/Z(F’,t)h(ﬂt)v/a(?,t) (2)
(D por 71 * o (T0):

—ih[%wl(r',t)]wa(ﬂt)=h(F‘,t)w;(F',t)wa(F,t) (3)
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Wigner transform of the density matrix

i . . (4)
Ihat r ') =[h(F,t)-h(F" t)]p(F,F"t)

p(FF )= wiu(F' thy,(F.t)

The single-particle Hartree-Fock Hamiltonian: B
h(F,t) =T(F)+Id3r' V(F=F't)p(F' 1)

=T(F)+U(F,1)

Kinetic term + potential (local) term
=2 EoM:

2

T2 j c
Qp(* r’ t)+—{h Vf+U(F,t)—2h—me,—U(F',t)]p(?,?’,t):O ®)

2m

Rewrite (5) using x instead of r



Wigner transform of the density matrix

| X, X i VZ U h g 2, -U P =0
X, X’,'[ V q',t )_(,X",t =
6t ( ) h 2m ( ) 2m ( ) ( )

Q Instead of considering the density matrix p, let‘s find the equation of motion
for its Fourier transform, i.e. the Wigner transform of the density matrix:

F(F,p.t)=[d% exp{—;lfﬁ) p(F+; Fo t]

old : X X

N\cm

New variables: L
_oX+ X L
= , S=X-X

2

f(r,p,t) isthe single-particle phase-space distribution function

Density in coordinate space: p(F,t)= T

Density in momentum space: ¢( p,t)= Id r f(r,p,t)



Uncertainty principle

Is it consistent with Quantum Mechanics?

What about uncertainty principle? Ax.Ap > E
2

Consider the case when disturbance varies only over macroscopic distances: AX ~ 1,

where A is a wave length of the particle: > i

24p

=» We can specify the momentum of the particle with microscopic accuracy 4p !

10



Wigner transformation + Taylor expansion

2 = 2 =2
O+ g sursdo-tgr —ur-d
2m +E 2 2m r—a 2

_[d S exp| — iro 2p F+§,F—§,t
B ot 2 2 (2)
2

| 7 [ _ _ S S
+——|d°s exp| == pS | |V® =V?  |p|F+=,T—=t
om 7 p(hp)[n r—;]p( 2 2)

+— Id sexp( % )[ (r+—t) U(”——t)]p(F gf %,t):O

O Usethat YV (see Task 1) (3)

. S S
) Consider Fr+— t)=-U(r-=
U(r+ 5 ) -U(T 2 ) Make Taylor expansion around r; s=20

2 1(1. -\ 2 1( 1. - ! 1
@ =Z—(5s-VFJU|S=O—ZF(—5s-V]ULO—ZZ( )ULO—

odd
~ §V~U(F,t) terms even in n cancel

Classical limit: keep only the first term n=1 (good approximation for hadronic potentials) 1



Vlasov equation-of-motion

From (2) and (3), (4) obtain
0

i I S S
—f r,p,t +—— d’s exp| ——PS | 2V, -V . p| T+ =, F—= t
I i ~ S S (see Task 2)
+—|d% exp|——ps|5-V. U(T,t r+—,r——,t|=0
- | p( hp) - U( )p( T2 o
g (M) f(F,pt Id s exp(——psj (r+%,F—%,tJ

Vlasov equation
- free propagation of particles in the self-generated HF mean-field potential:

aa—tf(r,|5,t)+m£6F £(F,p.t)=V,U(F,t)V,f(F,pt)=0 ©)

Eq.(6) is entirely classical (lowest order in s expansion).
Here U is a self-consistent potential associated with f phase-space distribution:

u(r,t)=

:
[ dordpv (F -, t) (7', B.1) "

(27r )’
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Vlasov EoM

Vlasov equation of motion

- free propagation of particles in the self-generated HF mean-field potential:

f(r,p.t)+

'CJl

9
ot

3 |'Ol

V. f(F,p,t)-V.U(F,t) V. f(F,p,t)=0

Vlasov EoM is equivalent to:

if(r p,t)=0= [gt ﬁﬁfﬁﬁ]f(ﬂﬁ,t):O
with
= ar — b => Classical equations of motion
dt m
. D _ trajectoty : r(t
p=P=—V,U(F.) R

1/\/\/
2/\/\/
Note: the quantum physics plays arole in the initial conditions for f:

the initial f in case of fermions must respect the Pauli principle
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Numerical solution of Vlasov EoM

Testparticle method or method of parallel ensembles :

the distribution functions of the system of N particles can be described as a sum of
point-like particles (8§ —functions)

In the limit of large number of parallel ensembles Nt — OO

(7.5, )=y Zil 6 = ()8 — By ()

Is a solution of Vlasov EoM

- di p
H . . J— | i
= Propagation of test-particles in I = E =
time following ‘classical’ EoM: d" m,
= D — _
Pi= dt = _VF}U(’;JI)
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Mean-field potential

) Testparticle method provides a smooth density distribution for calculation of
mean-field potential for particle propagation
(No exchange of particles between the parallel ensembles)

020 Au+Au

#(0,0,2) (1/fm%)

0.05

0.00

(0,0,z) (1/m’)

Mean-field potential:

1
(27h)°

U(F,t)= [d3rd®pv (F=T",t) f(F', 1)

O Effective two-body interaction with
a finite-range Yukawa, Skyrme-type and Coulomb interactions:
5 -
exXp(—pu|X — X . : e 0
v(x —X9) = —Ap p(=r] 2| + Byd?(x — Xo)p(x — x2)% + 1 L
£ ﬁ

ilx — xo|
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Density distribution: Vlasov equation

Ca+Ca, 40 A MeV

|

T I3
time = 50 fm/c | time =100 fm/c

time = 150 fm/c

t(z.p,)

[ e = 0 v | time =100 fmic |
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Useful literature

L. P. Kadanoff, G. Baym, ,Quantum Statistical Mechanics*, Benjamin, 1962
M. Bonitz, ,Quantum kinetic theory*¢, B.G. Teubner Stuttgart, 1998
W. Cassing, Transport Theories for Strongly-Interacting Systems’,

Springer Nature: Lecture Notes in Physics 989, 2021;
DOI: 10.1007/978-3-030-80295-0
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*Task 1

1) Show that ﬁi — ﬁg VHS;Q Vr s/2 — Qﬁs ' ﬁr‘-

where x =r+s/2, x'=r—s/2

s+ Solution:

1) We have (i=1,2.,3)
J d dr; 0 0ds; 10 J
+ — —

dr; Or;dxr; Js;0x;  20r;  Js;

o Doy 0ds; 19 D

' - i i —I_ i ' _— i - i "
dx.  Or;dx;  0Os; 0x  20r;  Js;

[

This leads to

3 1 = : ’
) 1 0 13 1 o J
2 = '~ (5 B 2
VT V vl +s/2 T vr s/2 T Z ((2 6-')?-_3: + ) ) (2 ("'}?‘i ({')5*1) )

102 a 0 +;r}9 15}9+ Jd 0 02
4 or? ()ri ds;  0s?  40r?  Or;0s;  0s?

-y

1=
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*Task 2

2) What is the Wigner transform of V-V, p(r +s/2.r — s/2) when assuming that p(r.s)
vanishes at s; — *oo for i = x,y, 27

< Solution:
The Wigner transform of V- Vp(r +s/2.r —s/2) is given by

/dgs exp(—%p .s)V. -V, plr+s/2.r—s/2)

-V, - [das r:xp(—%p .s)Vep(r+s/2,r —s/2). (4)
1
Use that y do(2) 0f(2)
£Vl )] — F(a) I A
d;t.‘ [f(‘l)g(l)] f(‘t) d;r- —l_ g(l) dlf )

Then
1

V. (ej{p(—gp 's) plr +8/2,1 — 5/2)) _

= exp(—%p - s)ﬁ’s plr+s/2.r —s/2)+ p(r+s/2,r — 5/2)6’5 C‘Kl}(—%p - S).
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*Task 2

Since , . :
V. exp(—%p - 8) = —%pf_‘.}{})(—%p - S),
we obtain that
exp(—%p-s)‘\;f"s plr+s/2,r —s/2) (5)
= V. (C}{p(—%p s) plr+s/2,r— 5/2)) + %p exp(—%p -8) plr+s/2,r —s/2).

Substitute (5) to eq.(4):

4): = V, - [ 435V, ((.‘f}{p(—%p -s) plr+s/2r— 5/2)) (6)

~V,- /dBS (V. E?KI}(—%p -s)) plr+s/2,r —s/2)
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*Task 2

The first term in (6) is vanishing in the limits of partial imtegration since p(r,s) — 0
when s; — Foo for all components 7 = 1,2, 3:

/dSSﬁS (expf—%p-s) plr+s/2 r— 5/2)) — 0
since /d : (pr —?p s) (r+s/2,r—s/2))

%C-XP(—EP-S) p(r+5/2,1 —s/2)[5 7

8;——00

- 1 ~ =
Thus, /(FS UXP(—EP -s)V, -V, plr+s/2,r—s/2) —>

(4) = _ﬁr'/dBS —Ep C‘Kp(—%p-sj (r+s/2,r—s/2)
z
/a’sfxp p s) plr+s/2,r —s/2)
= —p-\_/'rf(r?p). (7)

h




