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Lecture

Models for heavy-ion collisions:

(Part I): transport models -

Vlasov EoM

SS2024: ‚Dynamical models for relativistic heavy-ion collisions‘



• Statistical models:

basic assumption: system is described by a (grand) canonical 

ensemble of non-interacting fermions and bosons in thermal and chemical equilibrium 

= thermal hadron gas at freeze-out with common T and mB

[ - : no dynamical information]

• Hydrodynamical models:

basic assumption:  conservation laws + equation of state (EoS); 

assumption of local thermal and chemical equilibrium 

- Interactions are ‚hidden‘ in properties of the fluid described by transport coefficients

(shear and bulk viscosity h, z, ..), which is ‘input’ for the hydro models

[ - : simplified dynamics]

• Microscopic transport models:

based on transport theory of relativistic quantum many-body systems

- Explicitly account for the interactions of all degrees of freedom (hadrons and partons) 

in terms of cross sections and potentials

- Provide a unique dynamical description of strongly interaction matter 

in- and out-off equilibrium:

- In-equilibrium: transport coefficients are calculated in a box – controled by lQCD

- Nonequilibrium dynamics – controled by HIC

Actual solutions: Monte Carlo simulations 
[+ : full dynamics   |  - : very complicated]

Basic models for heavy-ion collisions
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Dynamical description of heavy-ion collisions

The goal: to study the properties of strongly interacting matter under 

extreme conditions from a microscopic point of view

Realization: dynamical many-body transport approaches

1) Dynamical transport models (nonrelativistic formulation):

from the Schrödinger equation to Vlasov equation of motion ➔ BUU EoM

2) Density-matrix formalism: Correlation dynamics

3) Quantum field theory ➔ Kadanoff-Baym dynamics

➔ generalized off-shell transport equations 

4) Transport models for HIC

Plan:
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1. From the Schrödinger equation to 

the Vlasov equation of motion
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kinetic term       2-body potential

Hartree-Fock approximation:

•many-body wave function      →

antisym. product of  single-particle wave functions

•many-body Hamiltonian   → single-particle Hartree-Fock Hamiltonian

Quantum mechanical description of the many-body system

Dynamics of heavy-ion collisions is a many-body problem!

Schrödinger equation for the system of N particles in three dimensions:

kinetic term       N-body potential

nonrelativistic 

formulation
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(approximation)



•Hartree term:

self-generated local mean-field potential 

•Fock term:

non-local mean-field exchange potential (quantum statistics)

➔ Equation-of-motion (EoM): propagation of particles in the self-generated mean-field:

Hartree-Fock equation

Time-dependent Hartree-Fock equation for a single particle i:

Single-particle Hartree-Fock Hamiltonian operator:
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Note: TDHF approximation describes only the interactions of particles 

with the time-dependent mean-field !

In order to describe the collisions between the individual(!) particles, one has to go

beyond the mean-field level ! (see Part 2: Correlation dynamics)

We‘ll neglected the exchange (Fock) term 
local potential



Single particle density matrix

❑ Introduce the single particle density matrix:

)t,r()t,r()t,r,r( *

occ






  

Thus, the single-particle Hartree-Fock Hamiltonian operator can be written as

)t,r(U)r(T)t,r,r()t,rr(Vrd)r(T)t,r(h
occ

3 
+=−+=  

 local potential
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)t,r()t,r(h)t,r(
t

i


   =




❑ Consider equation:

(1)

)t,r()t,r(h)t,r()t,r(
t

i)t,r(
** 




  =





)t,r()t,r()t,'r(h)t,r()t,r(
t

i ** 
   =













−

𝜓𝛼
∗ Ԧ𝑟′, 𝑡 ∗(1):

(1)+|𝑓𝑜𝑟 Ԧ𝑟′ ∗ 𝜓𝛼 𝑟, 𝑡 :

(2)

(3)

෍

𝛼

2 − 3 :



Wigner transform of the density matrix

0)t,r,r()t,r(U
m2

)t,r(U
m2

i
)t,r,r(

t

2

r

2
2

r

2

=







−−++













➔EoM:
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  )t,r,r()t,r(h)t,r(h)t,r,r(
t

i −=


 
 

)t,r()t,r()t,r,r( *

o cc






  

),()(

),,(),()(),(
3

trUrT

trrtrrVrdrTtrh





+=

−+=  

kinetic term + potential (local) term

The single-particle Hartree-Fock Hamiltonian:

0)t,x,x()t,x(U
m2

)t,x(U
m2

i
)t,x,x(

t

2

x

2
2

x

2

=







−−++













Rewrite (5) using x instead of r

(4)

(5)



Wigner transform of the density matrix

➔EoM:









−+








−=  t,

2

s
r,

2

s
rsp

i
expsd)t,p,r(f

3












❑ Instead of considering the density matrix , let‘s find the equation of motion 

for its Fourier transform, i.e. the Wigner transform of the density matrix: 

)t,p,r(f


is the single-particle phase-space distribution function 

Density in coordinate space: = )t,p,r(fpd
)2(

1
)t,r( 3

3









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= )t,p,r(frd)t,p(g
3 

Density in momentum space:

0)t,x,x()t,x(U
m2

)t,x(U
m2

i
)t,x,x(

t

2

x

2
2

x

2

=







−−++













xxs,
2

xx
r −=

+
=






xx:old 


New variables:
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Uncertainty principle

Consider the case when disturbance varies only over macroscopic distances:

where l is a wave length of the particle:

➔We can specify the momentum of the particle with microscopic accuracy Dp !

)t,p,r(f


Is it consistent with Quantum Mechanics?

What about uncertainty principle?
2

px


 DD

,~x lD

p2D
l



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Wigner transformation + Taylor expansion

(2)

❑ Make Wigner transformation of eq.(1)
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
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
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
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


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
=−

−+
❑ Use that (3)

❑ Consider

)t,r(Us

|Us
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1
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2
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1
|Us
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!n

1
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r
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





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
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
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

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

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 ==



=

=



=

Make Taylor expansion around r; s→0

terms even in n cancel

Classical limit: keep only the first term n=1 (good approximation for hadronic potentials)

(4)
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  (1)

(see Task 1)
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Vlasov equation-of-motion 

(5)

From (2) and (3),(4)  obtain
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

 




Vlasov equation 

- free propagation of particles in the self-generated HF mean-field potential:

(6)

Eq.(6) is entirely classical (lowest order in s expansion).

Here U is a self-consistent potential associated with f  phase-space distribution: 
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
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(see Task 2)



Vlasov EoM

Vlasov EoM is equivalent to:

0)t,p,r(fpr
t

0)t,p,r(f
dt

d
pr =







++




==









➔ Classical equations of motion 

)t,r(U
dt

pd
p

m

p

dt

rd
r

r







−==

==

Note: the quantum physics plays a role in the initial conditions for f: 

the initial f in case of fermions must respect the Pauli principle

)t(r:trajectoty


1

2

0)t,p,r(f)t,r(U)t,p,r(f
m

p
)t,p,r(f

t
prr =−+



 




Vlasov equation of motion 

- free propagation of particles in the self-generated HF mean-field potential:
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with



Numerical solution of Vlasov EoM

Testparticle method or method of parallel ensembles : 

the distribution functions of the system of N particles can be described as a sum of 

point-like particles (𝜹 −functions)

In the limit of large number of parallel ensembles     

f( Ԧ𝑟, Ԧ𝑝, 𝑡)=
1

𝑁𝑡
σ𝑖=1
𝑁∙𝑁𝑡 𝛿(Ԧ𝑟 − Ԧ𝑟𝑖(𝑡))𝛿( Ԧ𝑝 − Ԧ𝑝𝑖(𝑡))

𝑁𝑡 → ∞

is a solution of Vlasov EoM

➔ Propagation of test-particles in 

time following ‘classical’ EoM:
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t
1     +     2     +    3 +     ................ + N



Mean-field potential
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❑ Testparticle method provides  a smooth density distribution for calculation of 

mean-field potential for particle propagation

(No exchange of particles between the parallel ensembles)

t
1     +     2     +    3 +     ................ + N

❑ Effective two-body interaction with 

a finite-range Yukawa, Skyrme-type and Coulomb interactions:

),,(),(
)2(

1
),(

33

3
tprftrrpVdrdtrU






−= 

Mean-field potential: 

Au+Au



Density distribution: Vlasov equation
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Ca+Ca, 40 A MeV

time

f(x,z)

f(z,pz)
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*Task 1

1) Show that

❖ Solution:

18



*Task 2

❖ Solution:
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*Task 2
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*Task 2
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