

1

Lecture Models for heavy-ion collisions: (Part 2): transport models – BUU

SS2024: ,Dynamical models for relativistic heavy-ion collisions'

Vlasov equation-of-motion

Vlasov equation

- free propagation of particles in the self-generated HF mean-field potential:

$$\frac{\partial}{\partial t}f(\vec{r},\vec{p},t) + \frac{\vec{p}}{m}\vec{\nabla}_{\vec{r}} f(\vec{r},\vec{p},t) - \vec{\nabla}_{\vec{r}}U(\vec{r},t)\vec{\nabla}_{\vec{p}}f(\vec{r},\vec{p},t) = 0$$

Here U is a self-consistent potential associated with f phase-space distribution:

$$U(\vec{r},t) = \frac{1}{(2\pi\hbar)^3} \int d^3r' d^3p V(\vec{r}-\vec{r}',t) f(\vec{r}',\vec{p},t)$$

→ Classical equations of motion :

$$\dot{\vec{r}} = \frac{d\vec{r}}{dt} = \frac{\vec{p}}{m}$$
$$\dot{\vec{p}} = \frac{d\vec{p}}{dt} = -\vec{\nabla}_{\vec{r}}U(\vec{r},t)$$

From the Vlasov equation of motion to Boltzmann-Uehling-Uhlenbeck equation (BUU) – collision term

Dynamical transport models with collisions

➔ In order to describe the collisions between the individual(!) particles, one has to go beyond the mean-field level ! (See Part 2: Correlation dynamics)

In cms: $\vec{p}_1^* + \vec{p}_2^* = \vec{p}_3^* + \vec{p}_4^* = 0$

$$(\vec{r}_1, \vec{p}_1) (\vec{r}_2, \vec{p}_2) \rightarrow (\vec{r}_3, \vec{p}_3) (\vec{r}_4, \vec{p}_4)$$

□ If the phase-space around (*r*₃, *p*₃) and(*r*₄, *p*₄) is essentially empty then the scattering is allowed,
 □ if the states are filled → Pauli suppression
 = Pauli principle

BUU (VUU) equation

Boltzmann (Vlasov)-Uehling-Uhlenbeck equation (NON-relativistic formulation!) - free propagation of particles in the self-generated HF mean-field potential with an on-shell collision term:

$$\frac{d}{dt}f(\vec{r},\vec{p},t) \equiv \frac{\partial}{\partial t}f(\vec{r},\vec{p},t) + \frac{\vec{p}}{m}\vec{\nabla}_{\vec{r}}f(\vec{r},\vec{p},t) - \vec{\nabla}_{\vec{r}}U(\vec{r},t)\vec{\nabla}_{\vec{p}}f(\vec{r},\vec{p},t) = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

Collision integral for $1+2 \rightarrow 3+4$ (let's consider fermions) :

Probability including Pauli blocking of fermions

$$I_{coll} = \left(\frac{\partial f}{\partial t}\right)_{coll} \Rightarrow \frac{1}{((2\pi)^3)^3} \int d^3 p_2 \, d^3 p_3 \, d^3 p_4 \, \cdot w(1+2 \to 3+4) \cdot P$$

$$\times (2\pi)^3 \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \, (2\pi) \delta(\frac{\vec{p}_1^2}{2m_1} + \frac{\vec{p}_2^2}{2m_2} - \frac{\vec{p}_3^2}{2m_3} - \frac{\vec{p}_4^2}{2m_4})$$

Transition probability for 1+2 \rightarrow **3+4**: $w(1+2 \rightarrow 3+4) \Rightarrow v_{12} \cdot \frac{d^3\sigma}{d^3q}$

where

1

re
$$v_{12} = \frac{h}{m} / \vec{p}_1 - \vec{p}_2 / -$$
 relative velocity of the colliding nucleons

 $\frac{d^{3}\sigma}{d^{3}q}$ - differential cross section, q – momentum transfer $\vec{q} = \vec{p}_{1} - \vec{p}_{3}$

BUU: Collision integral

$$I_{coll} = \frac{4}{(2\pi)^3} \int d^3 p_2 \, d^3 p_3 \, \int d\Omega \, |v_{12}| \, \delta^3(\vec{p}_1 + \vec{p}_2 - \vec{p}_3 - \vec{p}_4) \cdot \frac{d\sigma}{d\Omega} (1 + 2 \to 3 + 4) \cdot P$$

Probability including Pauli blocking of fermions:

For particle 1 and 2: Collision term = Gain term – Loss term $I_{coll} = G - L$

*Note: for bosons – enhancement factor 1+f (where f<<1); often one neglects bose enhancement for HIC, i.e. $1+f \rightarrow 1$

Collision integral for system in equilibrium

Consider fermion gas in equilibrium - described by Fermi-Dirac distribution:

$$n_F(\epsilon) = (1 + \exp((\epsilon - \mu)/T))^{-1}$$

T – temperature,
 μ – baryon chemical potential

Collision interal of fermion system:

$$I(\mathbf{p}_{1}, \mathbf{p}_{1}; t) = \frac{g}{(2\pi)^{3}} \int d^{3}p_{2} \int d\Omega \ v_{12} \frac{d\sigma}{d\Omega} (\mathbf{p}_{1} + \mathbf{p}_{2}, \mathbf{p}_{2} - \mathbf{p}_{4})$$

 $\times \{ n(\mathbf{p}_{3}; t) n(\mathbf{p}_{4}; t) \bar{n}(\mathbf{p}_{1}; t) \bar{n}(\mathbf{p}_{2}; t) - n(\mathbf{p}_{1}; t) n(\mathbf{p}_{2}; t) \bar{n}(\mathbf{p}_{3}; t) \bar{n}(\mathbf{p}_{4}; t) \}$

$$\epsilon = \mathbf{p}^2/(2m), \, \bar{n}(\mathbf{p};t) = 1 - n(\mathbf{p};t) \qquad n = n_F(\epsilon) = n_F(\mathbf{p}^2/(2m))$$

In equilibrium collision term = 0

→ Gain term = Loss term

$$I(\mathbf{p}_1, \mathbf{p}_1; t) = 0.$$

i.e. number of forward and backward reactions in the system is the same

→ $n_F(\varepsilon)$ is stationary solution of $I(p_1, p_2; t)=0$

Collision integral for system in equilibrium

To show that $I(\mathbf{p}_1, \mathbf{p}_1; t) = 0$ we have to demonstrate that

$$n(\mathbf{p}_3)n(\mathbf{p}_4)\bar{n}(\mathbf{p}_1)\bar{n}(\mathbf{p}_2) = n(\mathbf{p}_1)n(\mathbf{p}_2)\bar{n}(\mathbf{p}_3)\bar{n}(\mathbf{p}_4)$$

Consider

onsider

$$1 - n_F(\epsilon) = 1 - \frac{1}{1 + \exp((\epsilon - \mu)/T)} = \frac{1 - (1 + \exp((\epsilon - \mu)/T))}{1 + \exp((\epsilon - \mu)/T)} = -\frac{\exp((\epsilon - \mu)/T)}{1 + \exp((\epsilon - \mu)/T)}$$

$$\frac{\exp((\epsilon_1 - \mu)/T)}{(1 + \exp((\epsilon_1 - \mu)/T))} \frac{\exp((\epsilon_2 - \mu)/T)}{(1 + \exp((\epsilon_2 - \mu)/T))} \frac{1}{(1 + \exp((\epsilon_3 - \mu)/T))} \frac{1}{(1 + \exp((\epsilon_4 - \mu)/T))} = \frac{\exp((\epsilon_4 - \mu)/T)}{(1 + \exp((\epsilon_4 - \mu)/T))} \frac{\exp((\epsilon_4 - \mu)/T)}{(1 + \exp((\epsilon_4 - \mu)/T))} \frac{1}{(1 + \exp((\epsilon_1 - \mu)/T))} \frac{1}{(1 + \exp((\epsilon_2 - \mu)/T))} \frac{1}{(1 + \exp(\epsilon_2 - \mu)/T)} \frac{1}{(1 + \exp$$

Since the denominators on both sides are the same one has to proof only $\bigvee_{\substack{\epsilon_1 \leq \mu \leq \tau_2 \leq \tau_3 \leq \tau_4 < \tau_4 < \tau_4 \leq \tau_4 \leq \tau_4 \leq \tau_4 < \tau_4 <$

Since due to energy conservation $\delta(\epsilon_1 + \epsilon_2 - \epsilon_3 - \epsilon_4)$ we have $\epsilon_1 + \epsilon_2 = \epsilon_3 + \epsilon_4$, what proofs that $n_{F}(\epsilon)$ is a stationary solution of collision integral for system in equilibrium

Transport equations have a correct thermodynamic limit!

Dynamical transport model: collision terms

□ BUU eq. for different particles of type *i*=1,...n

$$Df_i \equiv \frac{d}{dt} f_i = I_{coll} \left[f_1, f_2, \dots, f_n \right]$$
(20)

Drift term=Vlasov eq. collision term

i: Baryons: $p, n, \Delta(1232), N(1440), N(1535), \dots, \Lambda, \Sigma, \Sigma^*, \Xi, \Omega; \Lambda_C$ Mesons: $\pi, \eta, K, \overline{K}, \rho, \omega, K^*, \eta', \phi, a_1, \dots, D, \overline{D}, J / \Psi, \Psi', \dots$

 \rightarrow coupled set of BUU equations for different particles of type *i*=1,...*n*

$$\begin{cases} Df_{N} = I_{coll} \left[f_{N}, f_{\Delta}, f_{N(1440)}, ..., f_{\pi}, f_{\rho}, ... \right] \\ Df_{\Delta} = I_{coll} \left[f_{N}, f_{\Delta}, f_{N(1440)}, ..., f_{\pi}, f_{\rho}, ... \right] \\ ... \\ Df_{\pi} = I_{coll} \left[f_{N}, f_{\Delta}, f_{N(1440)}, ..., f_{\pi}, f_{\rho}, ... \right] \\ ... \end{cases}$$

E.g., Nucleon transport in N, π , Δ system : Df_N=I_{coll}

(only $1 \leftrightarrow 2$, $2 \leftrightarrow 2$ reactions indicated here)

$$\begin{aligned} \frac{\partial f_N}{\partial t} &+ \vec{v} \cdot \frac{\partial f_N}{\partial r} - \nabla_r U_N \cdot \frac{\partial f_N}{\partial p} = f_{NN+NN} + I_{N\Delta+N\Delta} + I_{NN+N\Delta} + I_{NN+\Delta\Delta} + I_{N+\Delta+\Delta} + I_{N\Delta+\Delta\Delta} + I_{N\Delta+\Delta} +$$

 \rightarrow set of transport equations coupled via I_{coll} and mean field

Dynamical transport model: collision terms

$$\begin{split} Df_{\pi} &= \sum_{N,\Delta} \frac{g}{(2\pi)^{3}} \int \frac{d^{3}p_{\Delta}}{E_{\Delta}} \frac{d^{3}p_{N}}{E_{N}} |M_{\Delta \leftrightarrow \pi N}|^{2} \cdot \delta^{4}(p_{\pi} + p_{N} - p_{\Delta}) \times \frac{f_{\Delta}(p_{\Delta}) (1 + f_{\pi}(p_{\pi}))(1 - f_{N}(p_{N}))}{\Delta \rightarrow \pi N} \\ &- \sum_{\pi,N} \frac{g}{(2\pi)^{3}} \int \frac{d^{3}p_{\Delta}}{E_{\Delta}} \frac{d^{3}p_{N}}{E_{N}} |M_{\Delta \leftrightarrow \pi N}|^{2} \cdot \delta^{4}(p_{\pi} + p_{N} - p_{\Delta}) \times \frac{f_{\pi}(p_{\pi}) f_{N}(p_{N})(1 - f_{\Delta}(p_{\Delta}))}{\pi N \rightarrow \Delta} \\ &= Gain (\Delta \rightarrow \pi N) - Loss (\pi N \rightarrow \Delta) \\ &\pi \text{ production } \pi \text{ absorbtion} \\ &by \text{ Adecay } by \text{ nucleon} \end{split}$$

Eq. for *m*

Dynamical transport model: possible interactions

Consider **possible interactions** for the sytem of (*N*,*R*,*m*),

where N-nucleons, R- resonances, m-mesons

□ elastic collisions:

Baryon-baryon (BB):	meson-Baryon (mB)	meson-meson (mm)
$NN \rightarrow NN$	$mN \rightarrow mN$	$m m' \rightarrow m m'$
$NR \rightarrow NR$	$mR \rightarrow mR$	
$RR' \rightarrow RR'$		Detailed balance: $a + b \leftrightarrow c$
inelastic collisions:		$a+b \leftrightarrow c+d$
Baryon-baryon (BB):	meson-Baryon (mB)	meson-meson (mm)
$NN \leftrightarrow NR$	$mN \leftrightarrow R$	$m \ m' \leftrightarrow \widetilde{m}$
$NR \leftrightarrow NR'$	$mR \leftrightarrow R'$	$m m' \leftrightarrow m''m'''$
$NN \leftrightarrow RR'$	$mB \leftrightarrow m'B'$	•••
•••	•••	$m m' \rightarrow X$
$BB \rightarrow X$	$mB \rightarrow X$	
		X - multi-particle state

Elementary hadronic interactions

Consider all possible interactions – elastic and inelastic collisions - for the sytem of (*N*,*R*,*m*), where *N*-nucleons, *R*-resonances, *m*-mesons, and resonance decays

Low energy collisions:

- binary 2←→2 and
 2←→3(4) reactions
- 1←→2 : formation and decay of baryonic and mesonic resonances

 $BB \leftarrow \rightarrow B'B'$ $BB \leftarrow \rightarrow B'B'm$ $mB \leftarrow \rightarrow m'B'$ $mB \leftarrow \rightarrow B'$ $mm \leftarrow \rightarrow m'm'$ $mm \leftarrow \rightarrow m'$

Baryons: $B = p, n, \Delta(1232),$ N(1440), N(1535), ...Mesons: $M = \pi, \eta, \rho, \omega, \phi, ...$

High energy collisions: (above s^{1/2}~2.5 GeV) Inclusive particle production: BB→X, mB→X, mm→X X =many particles described by string formation and decay (string = excited color singlet states q-qq, q-qbar) using LUND string model

Elementary reactions with resonances

Matrix element:
$$M_{ab \to cd} = M_{ab \to R} \cdot P_R \cdot M_{R \to cd}$$

Propagator:
$$P_R = \frac{1}{s - M_R^2 + \Pi}$$

where self-energy $\Pi = i\sqrt{s} \Gamma_{tot}(s), \qquad \Gamma_{tot}(s) = \sum_{j} \Gamma_{j}$ total width

Elementary reactions with resonances

The spin averaged/sumed matrix element squared is

$$\overline{\left|M_{ab\rightarrow cd}\right|^{2}} = \overline{\left|M_{ab\rightarrow R}\right|^{2}} \cdot P_{R}^{2} \cdot \overline{\left|M_{R\rightarrow cd}\right|^{2}}$$

Partial decay width:

$$\Gamma_{R \to ab}(s) = \frac{p_a}{8\pi s} \cdot \overline{M_{R \to ab}/^2}$$

 p_a – momentum of *a* in the rest frame of *R* or cms *a*+*b*

$$\sigma_{ab\to R\to cd}(s) = \frac{2J_R + 1}{(2J_a + 1)(2J_b + 1)} \frac{4\pi}{p_a} \frac{s\Gamma_{R\to ab}(s) \cdot \Gamma_{R\to cd}(s)}{(s - M_R^2)^2 + s\Gamma_{tot}^2(s)}$$

Spectral function

The total width = the sum over all partial channels:

$$\Gamma_{tot}(\mu) = \sum_{j} \Gamma_{j}(\mu)$$

$$\Box \text{ Life time of resonance with mass } \mu: \quad \tau(\mu) = \frac{\hbar c}{\Gamma_{tot}(\mu)}$$

Note: Experimental life time \rightarrow with pole mass $\mu = M_R$

$$\tau_{R} = \frac{\hbar c}{\Gamma_{tot}(\mu = M_{R})}$$

16

Decay rate

Branching ratio= probability to decay to channel *j*:

$$Br \equiv P_j = \frac{\Gamma_j(\mu)}{\Gamma_{tot}(\mu)}$$

Detailed balance

Detailed balance: $a + b \leftrightarrow c + d$

Note: DB is important to get the correct equilibrium properties

$$\sigma_{c+d\to a+b}(s) = \frac{(2J_a+1)(2J_b+1)}{(2J_c+1)(2J_d+1)} \frac{p_{ab}^2(s)}{p_{cd}^2(s)} \sigma_{a+b\to c+d}(s)$$

J- spin

Momentum of particle *a* (or *b*) in cms:

$$p_{ab}(s) = \frac{\left[(s - (m_a + m_b)^2)(s - (m_a - m_b)^2)\right]^{1/2}}{2\sqrt{s}}$$

Momentum of particle *c* (or *d*) in cms:

$$p_{cd}(s) = \frac{\left[(s - (m_c + m_d)^2)(s - (m_c - m_d)^2)\right]^{1/2}}{2\sqrt{s}}$$

Detailed balance on the level of $2 \leftarrow \rightarrow$ n: treatment of multi-particle collisions in transport approaches

W. Cassing, NPA 700 (2002) 618

Generalized collision integral for $n \leftarrow \rightarrow m$ reactions:

$$I_{coll} = \sum_{n} \sum_{m} I_{coll}[n \leftrightarrow m]$$

$$\begin{split} I_{coll}^{i}[n \leftrightarrow m] &= \\ \frac{1}{2} N_{n}^{m} \sum_{\nu} \sum_{\lambda} \left(\frac{1}{(2\pi)^{4}} \right)^{n+m-1} \int \left(\prod_{j=2}^{n} d^{4}p_{j} \ A_{j}(x,p_{j}) \right) \left(\prod_{k=1}^{m} d^{4}p_{k} \ A_{k}(x,p_{k}) \right) \\ &\times A_{i}(x,p) \ W_{n,m}(p,p_{j};i,\nu \mid p_{k};\lambda) \ (2\pi)^{4} \ \delta^{4}(p^{\mu} + \sum_{j=2}^{n} p_{j}^{\mu} - \sum_{k=1}^{m} p_{k}^{\mu}) \\ &\times [\tilde{f}_{i}(x,p) \ \prod_{k=1}^{m} f_{k}(x,p_{k}) \ \prod_{j=2}^{n} \tilde{f}_{j}(x,p_{j}) - f_{i}(x,p) \ \prod_{j=2}^{n} f_{j}(x,p_{j}) \ \prod_{k=1}^{m} \tilde{f}_{k}(x,p_{k})]. \end{split}$$

$\tilde{f} = 1 + \eta f$ is Pauli-blocking or Bose-enhancement factors; η =1 for bosons and η =-1 for fermions

 $W_{n,m}(p, p_j; i, \nu \mid p_k; \lambda)$ is a transition probability A(x,p) - spectral function

Antibaryon production in heavy-ion reactions

Multi-meson fusion reactions $m_1+m_2+...+m_n \leftarrow \Rightarrow B+Bbar$ $m=\pi,\rho,\omega,.. B=p,\Lambda,\Sigma,\Omega$, (>2000 channels)

important for anti-proton, anti-lambda, anti-Xi, anti-Omega dynamics !

 10^{2} Pb+Pb, 160 A GeV NA49 central 0.003 dN/dt [arb. units] ▲ AGS BB->X • o p+p 3 mesons -> $B\overline{B}$ ······ Hadron Gas **10**¹ 0.002·---- HSD ···· UrQMD 0.001 10^{0} 0 2 4 6 8 10 t [fm/c] 20 30 10 √s_{nn} (GeV)

→ approximate equilibrium of annihilation and recreation

W. Cassing, NPA 700 (2002) 618 E. Seifert, W. Cassing, 1710.00665, 1801.07557

20

t = 0.15 fm/c

Summary

Stages of a collision in PHSD

t = 2.55 fm/c

Summary

Stages of a collision in PHSD

b = 2.2 fm - Section view

- Baryons (394)
 Antibaryons (0)
 Mesons (93)
 Quarks (54)
 - Gluons (0)

t = 5.25 fm/c

Summary

Stages of a collision in PHSD

b = 2.2 fm - Section view

- Baryons (394)Antibaryons (0)
- Mesons (477)
- Quarks (282)
- Gluons (33)

t = 6.55001 fm/c

Summary

Stages of a collision in PHSD

t = 23.0999 fm/c

- Mesons (947)
- Quarks (0)
- Gluons (0)

Useful literature

L. P. Kadanoff, G. Baym, , Quantum Statistical Mechanics', Benjamin, 1962

M. Bonitz, , Quantum kinetic theory', B.G. Teubner Stuttgart, 1998

W. Cassing and E.L. Bratkovskaya, 'Hadronic and electromagnetic probes of hot and dense nuclear matter', Phys. Reports 308 (1999) 65-233. http://inspirehep.net/record/495619

W. Cassing, `Transport Theories for Strongly-Interacting Systems', Springer Nature: Lecture Notes in Physics 989, 2021; DOI: 10.1007/978-3-030-80295-0