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Lecture

Models for heavy-ion collisions:

(Part 2): transport models –

BUU

SS2024: ‚Dynamical models for relativistic heavy-ion collisions‘
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Vlasov equation-of-motion 
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Vlasov equation 

- free propagation of particles in the self-generated HF mean-field potential:

Here U is a self-consistent potential associated with f  phase-space distribution: 
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From the Vlasov equation of motion

to Boltzmann-Uehling-Uhlenbeck equation 

(BUU) – collision term
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Dynamical transport models with collisions

add 2-body collisions:
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Interaction 1+2→3+4
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❑ If the phase-space around              

is essentially empty then the scattering is allowed, 

❑ if the states are filled → Pauli suppression 

= Pauli principle
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➔ In order to describe the collisions between the individual(!) particles, one has to 

go beyond the mean-field level ! (See Part 2: Correlation dynamics)
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BUU (VUU) equation

coll

prr
t

f
)t,p,r(f)t,r(U)t,p,r(f

m

p
)t,p,r(f

t
)t,p,r(f

dt

d












=−+











Boltzmann (Vlasov)-Uehling-Uhlenbeck equation (NON-relativistic formulation!)

- free propagation of particles in the self-generated HF mean-field potential

with an on-shell collision term:

Collision integral for 1+2→3+4 (let‘s consider fermions) :

Transition probability for 1+2→3+4:
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Pauli blocking of fermions
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BUU: Collision integral
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Probability including Pauli blocking of fermions:

Pauli blocking factors

for fermions *

*Note: for bosons – enhancement factor 1+f (where f<<1);

often one neglects bose enhancement for HIC, i.e. 1+f →1

Gain term

3+4→1+2
Loss term

1+2→3+4

LGIcoll −=For particle 1 and 2: 

Collision term = Gain term – Loss term
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In equilibrium collision term = 0 

→ Gain term = Loss term 

i.e. number of forward and backward reactions in the system is the same

Collision integral for system in equilibrium

Consider fermion gas in equilibrium - described by Fermi-Dirac distribution:

7

T – temperature, 

m – baryon chemical potential

Collision interal of fermion system:  

➔ nF(e) is stationary solution of I(p1,p2;t)=0



Collision integral for system in equilibrium
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To show that                                  we have to demonstrate that 

Consider

Since the denominators on both sides are the same one has to proof only

Since due to energy conservation δ(ϵ1 +ϵ2−ϵ3−ϵ4) we have ϵ1 +ϵ2 = ϵ3 +ϵ4, what proofs 
that nF (ϵ) is a stationary solution of collision integral for system in equilibrium

➔ Transport equations have a correct thermodynamic limit!



Dynamical transport model: collision terms

(20)

❑ BUU eq. for different particles of type i=1,…n
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E.g., Nucleon transport in N,, system : DfN=Icoll

(only 1→2,  2→2 

reactions indicated here)

Full collision term consists of >10000 

different particle combinations

➔ set of transport equations coupled via Icoll and mean field



Dynamical transport model: collision terms

decayproduction
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Dynamical transport model: possible interactions

Consider possible interactions for the sytem of (N,R,m),

where N-nucleons, R- resonances, m-mesons

❑ elastic collisions:

RRRR

NRNR

NNNN

→

→

→
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Detailed balance:
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Elementary hadronic interactions

Low energy collisions:

▪ binary 2→2 and

2→3(4)  reactions 

▪ 1→2 : formation and 

decay of baryonic and 

mesonic resonances  

BB → B´B´

BB → B´B´m

mB → m´B´

mB → B´

mm → m´m´

mm → m´ . . .

Baryons: 

B = p, n, (1232), 

N(1440), N(1535), ...

Mesons: 

M = , , , , , ...

+p

pp

High energy collisions:

(above s1/2~2.5 GeV)

Inclusive particle 

production:

BB→X , mB→X, mm→X

X =many particles

described by 

string formation and decay

(string = excited color 

singlet states q-qq, q-qbar)

using LUND string model

Consider all possible interactions – elastic and inelastic collisions - for the sytem 

of (N,R,m), where N-nucleons, R- resonances, m-mesons, and resonance decays

25
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Elementary reactions with resonances

dcRba +→→+❑ Consider the reaction

intermediate resonance
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Elementary reactions with resonances
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Spectral function

Production of resonance with effective mass m ➔

❑ spectral function =  Breight-Wigner distribution:
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Decay rate

Decay rate:
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Detailed balance

Note: DB is important to get the correct equilibrium properties 

dcba ++Detailed balance:
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Detailed balance on the level of 2→n: 

treatment of multi-particle collisions in transport approaches

W. Cassing,  NPA 700 (2002) 618

Generalized collision integral for n → m reactions:

is Pauli-blocking or Bose-enhancement factors; 

=1 for bosons and =-1 for fermions

is a transition probability A(x,p) - spectral function 
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Antibaryon production in heavy-ion reactions
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W. Cassing,  NPA 700 (2002) 618

E. Seifert, W. Cassing, 1710.00665, 1801.07557Multi-meson fusion reactions

m1+m2+...+mn → B+Bbar

m=,,,..  B=p,,,,  (>2000 channels)

❑ important for anti-proton, anti-lambda, 

anti-Xi, anti-Omega dynamics !
2→3

→ approximate equilibrium of annihilation and recreation
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