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Lecture

Models for heavy-ion collisions:

(Part 4): transport models

SS2024: ‚Dynamical models for relativistic heavy-ion collisions‘



2. Quantum field theory 

➔ Kadanoff-Baym dynamics 
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From weakly to strongly interacting systems

Many-body theory:

Strong interaction ➔ large width = short life-time

➔ broad spectral function ➔ quantum object

▪ How to describe the dynamics of 

broad strongly interacting quantum 

states in transport theory?

Barcelona / 

Valencia 

group

L(1783)N-1

and 

S(1830)N-1

exitations

❑ semi-classical BUU

❑ generalized transport equations 

based on Kadanoff-Baym dynamics

first order gradient 

expansion of quantum 

Kadanoff-Baym equations

In-medium effects (on hadronic or partonic levels!) = changes of particle 

properties in the hot and dense medium 

Example: hadronic medium - vector mesons, strange mesons

QGP – ‚dressing‘ of partons 
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Dynamical description of strongly interacting systems

❑ Semi-classical on-shell BUU: applies for small collisional width, i.e.  for a weakly 

interacting systems of particles

❑ Quantum field theory ➔

Kadanoff-Baym dynamics for resummed single-particle Green functions S<   (= G<)

(1962)

Leo Kadanoff Gordon Baym
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Integration over the intermediate spacetime

How to describe strongly interacting systems?!

boson

fermion
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Heisenberg picture

Eq. (1) has the formal solution:

❑ Relativistic formulations of the many-body problem are described within 

covariant field theory.

The fields themselves are distributions in space-time ➔

from Schrödinger picture → Heisenberg picture: 

❑ In the Heisenberg picture the time evolutions of the system is described by 

time-dependent operators that are evolved with the help of the unitary time-evolution 

operator U (t, t′) which follows

(1)

Schrödinger operator of the system

(2)

If H doesn‘t depend on time:

Dyson series
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Time evolution operator in Heisenberg picture

(3)

❑ The time evolution of any operator O in the Heisenberg picture from time t0 to t 

is given by

Schrödinger picture               → Heisenberg picture: 

Ψ(𝑥, 𝑡) Ψ(𝑥, 𝑡0 = 0)

𝑂

If H doesn‘t depend on time:
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Expectation value in Heisenberg picture

This implies that first the system is evolved from t0 to t and then backward from 

t to t0. This may be expressed as a time integral along the Keldysh-Contour

❑ If the initial state is given by some density matrix ρ, which may be a pure 

or mixed state

❑ then the time evolution of expectation value O(t) of the operator O in the 

Heisenberg picture from time t0 to t is given by

(4)
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Two-point functions on the Keldysh contour

(5)

Consider: Interacting field theory for spinless massive scalar bosons ➔

scalar field f(x)

❑ Green functions: elementary degrees of freedom

Tc / Ta denote time ordering on the upper/lower branch of the real-time contour

G++

G- -

tx and ty on upper part; tx>ty 

tx on upper; ty on lower part

tx on lower; ty on upper part

tx and ty on lower part; ty>tx 

In matrix notation:

Real-time (Keldysh-)  Contour

Causal:

Anticausal:

Small:

Large:

in the Heisenberg picture
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❑ Relation to the one-body density matrix r :

Green functions on contour

Note: 

only two Green functions

are independent!

❑ Two-point functions F on the closed-time-path (CTP) generally can be 

expressed by retarded (R) and advanced (A) components as

Note that the advanced and retarded components of the Green functions contain 

only spectral and no statistical information (see below)

giving in particular the relation

(7)

(8)

t=(t+t’)/2

(6) 
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❑ Dyson-Schwinger equation (follows from Schrödinger eq.): 

Dyson-Schwinger equation on the closed-time-path reads in matrix form:

Dyson-Schwinger equation on the contour

⨀ means convolution integral over the closed time-path

(9)

Illustration of the Dyson equation
Free propagator for Bose case:
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Towards the Kadanoff-Baym equations

For Bose case the free propagator is defined via the negative inverse 

Klein-Gordon operator in space-time representation

which is a solution of the Klein-Gordon equation in the following sense:

with δp denoting the δ-function on the closed time path (CTP). 

In (11) m denotes the bare mass of the scalar field.

(12)

(11)

Free Green function G0(x,y)
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The Kadanoff-Baym equations

To derive the Kadanoff-Baym equations one multiplies Dyson-Schwinger eq. (10) 

with 1) G0x
-1 and 2) with G0y

-1

This gives four equations for G<, G> (for propagation in x or in y) which can be 

written in the form:

2) (10)*G0y
-1 
➔ propagation of Green functions in variable y 

(similar to (11) → adjoint eqs.)

1) (10)*G0x
-1 
➔ propagation of Green functions in variable x

(11)

L. P. Kadanoff, G. Baym, ‚Quantum Statistical Mechanics‘, Benjamin, 1962

➔ Kadanoff-Baym equations: 

provide nonequilibrium time evolution of quantum system in terms 

of 2-point Green functions
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Derivation of the selfenergy

Resummed propagators with self-generated mean-field

G0 – ‚free‘ part  of action (kinetic + mass terms), G0 - free propagator, 

means convolution integral over the closed time-pathp

Effective action G :

❑ Define selfenergy S by the variation of G [G]

Ф(G) is the ‚interaction part‘ = sum of all connected nPI diagrams built up by the full G(x,y)

➔ The selfenergy S are obtained by opening of a propagator line in the 

irreducible diagrams F

(15)

(16)

Used approximation: Two-particle irreducible (2PI) diagrams 

Yu. Ivanov, J. Knoll, D. Voskresensky, NPA657 (1999) 413 
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Example: scalar theory with self-interactions

❑ Ф(G) :  the sum of all closed 2PI diagrams built up by the full G(x,y):

From (16) ➔ self-energies are defined by the variation of Ф w.r.t G(y,x):

➔ Cut a line and stretch:

❑ Lagrangian density:

Ф4 – theory: the interacting field theory for spinless massive scalar bosons

provides a ‚theoretical laboratory‘ for testing approximation schemes  

f(x) – real scalar field

l – is a coupling constant

d+1: d=dimension of space

(d=3 or 2) + 1(=time)

Ф(G) up to 3-loop order; 

~ 2nd order in l (i.e. 2PI)

(17)

(18)
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2PI self-energies in Ф4 - theory

Local in space and time part: 

tadpole
Nonlocal part: sunset

local ‚potential‘ term   (~λ)

leads to the generation of an effective 

mass for the field quanta

interaction term  (~ λ2)

x=y

x y

(19)
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Kadanoff-Baym equations of motion for G<

Kadanoff-Baym equations  include:

- the influence of the mean-field on the particle propagation generated by 

the tadpole diagram

- as well as scattering processes as inherent in the sunset diagram.

d: dimension of space

potential term

interaction term

1)

2)

(20)

tadpole diagram

sunset diagram



KB equations for Ф4–theory for homogeneous system

➢ do Wigner transformation of the Kadanoff-Baym equations:

For any function FXY with X=(x+y)/2 – space-time coordinate, P – 4-momentum

17

❑ Example: Solution of KB for the case of Ф4 – theory for homogeneous system  

(no X dependence):

Collision term

➔ Wigner transformed KB:

Self-energies in two-time, momentum space (p; t; t0) representation:



KB equations for Ф4–theory for homogeneous system
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! KB collision term apart from 𝟐 ↔ 𝟐 processes also involves 𝟏 ↔ 𝟑 processes

which are not allowed by energy conservation in an on-shell collision term for 

massive particles!

𝟐 ↔ 𝟐 𝟏 ↔ 𝟑

Collision term:



Solutions of KB equations for Ф4 – theory for homogeneous 

system
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❑ Set initial conditions:

Example: set 4 different initial distributions DT, D1, D2, D3 that are all 

characterized by the same energy density 

➔ for large times (t→∞) all initial distributions should lead to the same 

equilibrium final state

occupation density n

distribution D3

S. Juchem, W. Cassing, and C. Greiner, Phys. Rev. D 69 (2004) 025006; Nucl. Phys. A 743 (2004) 92

D2

D2



Solutions of KB equations for Ф4 – theory
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❑ Time evolution of the Green's function iG<(px; py; t; t) in momentum space for 

the initial distribution D2 for l/m=18

❑ t→∞ equilibrium final state

S. Juchem, W. Cassing, and C. Greiner, Phys. Rev. D 69 (2004) 025006; Nucl. Phys. A 743 (2004) 92



Solutions of KB equations for Ф4 – theory
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❑ Time evolution of the occupation density n(px; py; t) in momentum space for 

the initial distribution D2 for l/m=18

❑ t→∞ equilibrium final state

S. Juchem, W. Cassing, and C. Greiner, Phys. Rev. D 69 (2004) 025006; Nucl. Phys. A 743 (2004) 92



Boltzmann vs. Kadanoff-Baym dynamics
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❑ Example: Ф4 – theory

❑ KB: faster equilibration for larger 

coupling constant

❑ Boltzmann: works well for small 

coupling (on-shell states)

1) Consider quadrupole moment 

The relaxation of the quadrupole moment 

for different coupling constants l/m

2)  The relaxation rate of the 

quadrupole moment vs. coupling 

constants l/m

D1

D2

S. Juchem, W. Cassing, and C. Greiner, Phys. Rev. D 69 (2004) 025006; Nucl. Phys. A 743 (2004) 92

Initial distribution D1, D2



Advantages of Kadanoff-Baym dynamics vs Boltzmann
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Boltzmann equations

❑ propagate two-point Green functions 

G<(x,p)→A(x,p)*N(x,p)
in 8 dimensions

❑ propagate phase space 

distribution function f(𝒓,𝒑,t) 
in 6+1 dimensions

❑ works well for small coupling

=  weakly interacting system,

➔ on-shell approach

❑ Applicable for strong coupling = strongly interaction system

❑ Includes memory effects (time integration) and off-shell transitions in 

collision term

❑ Dynamically generates a broad spectral function for strong coupling

❑ KB can be solved exactly for model cases as Ф4 – theory

❑ KB can be solved in 1st order gradient expansion in terms of generalized 

transport equations (in test particle ansatz) for realistic systems of HICs

Kadanoff-Baym equations:

p=(𝒑𝟎,𝒑)x=(t,𝒓)

❑ G< carries information not only on the 

occupation number NXP , but also on 

the particle properties, interactions and 

correlations via spectral function AXP
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