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Lecture

Models for heavy-ion collisions:

(Part 5): transport models

SS2024: ‚Dynamical models for relativistic heavy-ion collisions‘



2. Quantum field theory 

➔ Kadanoff-Baym dynamics 

➔ generalized off-shell transport equations 
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Kadanoff-Baym equations of motion for G<

Kadanoff-Baym equations  include:

- the influence of the mean-field on the particle propagation generated by 

the tadpole diagram

- as well as scattering processes as inherent in the sunset diagram.

d: dimension of space

potential term

interaction term

1)

2)

(20)



Wigner transformation of the Kadanoff-Baym equation

➢ do Wigner transformation of the Kadanoff-Baym equation

Convolution integrals convert under Wigner transformation as

Operator     is a 4-dimentional 

generalizaton of the Poisson-bracket:
an infinite series in the differential operator

For any function FXY with X=(x+y)/2 – space-time coordinate, P – 4-momentum

➢ consider only contribution up to first order in the gradients   

= a standard approximation of kinetic theory which is justified if the gradients in 

the mean spacial coordinate X are small
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From Kadanoff-Baym equations to transport equations 

➢ separate all retarded and advanced quantities – Geen functions and 

self- energies – into real and imaginary parts:

The imaginary part of the retarded 

propagator is given by the 

normalized spectral function AXP:

The spectral function AXP in first order gradient expansion (for bosons) :

The imaginary part of the selfenergy

corresponds to the width GXP ;

then from Dyson-Schwinger equation:

The real part of the retarded propagator in first order gradient expansion :

algebraic solution

AXP and ReSXP
ret in first order gradient expansion depend ONLY on SXP

ret !
5
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From Kadanoff-Baym equations to 

generalized transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym 

equations and separation into the real and imaginary parts one gets:

Backflow term incorporates the off-shell behavior in the particle propagation

! vanishes in the quasiparticle limit AXP→ d(p2-M2) 

❑ Spectral function:

– ‚width‘ of spectral function 

= reaction rate of particle (at space-time position X)

4-dimentional generalizaton of the Poisson-bracket:

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

❑ GTE: Propagation of the Green‘s function iS<
XP=AXPNXP , which carries 

information not only on the number of particles (NXP), but also on their properties,

interactions and correlations (via AXP)

GSG 0

ret

XPXP p2Im =−=

drift term Vlasov term collision term = ‚gain‘ - ‚loss‘ termbackflow term

Generalized transport equations (GTE):

G


c
=

❑ Life time
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From Kadanoff-Baym equations to 

transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym

equations and separation into the real and imaginary parts one gets:

drift term Vlasov 

term

collision term = ‚loss‘ term - ‚gain‘ 

term

backflow term

1. Generalized transport equations:

2. Generalized mass-shell equations:

Backflow term incorporates the off-shell behavior in the particle propagation

! vanishes in the quasiparticle limit

! Eqs. (1) and (2) are not fully consistent → differ by higher order gradient 

terms since  (1) contains  ReSXP
ret in the backflow term

4-dimentional generalizaton of the Poisson-bracket:
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From Kadanoff-Baym equations to transport equations 

Greens function S< characterizes the number of particles (N) 

and their properties (A – spectral function )

N -number distribution

A - spectral function 

G- width of spectral function = 

reaction rate of particle

(at phase-space position XP)

The Botermans-Malfliet solution (1990):

➢ separate spectral information from occupation density:

➢ rewrite

with

→ ‚correction  term‘                       =       collision term /AXP

of 2nd gradient orders → have to be omitted for consistency ! 

→ as a consequence: NS −> N ,     S<  −> S< −G/A

➔ Generalized transport equations can be written:

! now consistent in gradient order with the mass-shell equation ! → used in PHSD

non-equilibrium corrections
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General testparticle off-shell equations of motion

❑ Employ testparticle Ansatz for the real valued quantity i S<
XP  -

insert in generalized transport equations  and determine equations of motion !

➔ General testparticle ‚Cassing-Juchem off-shell equations of motion‘ 

for the time-like particles:

with

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

Note: the common factor 1/(1-C(i)) can be absorbed in an ‚eigentime‘ of particle (i) !



Limiting cases

❑ Γ(X,P) = Γ(X) - width depends only on space-time X:

=>

follows:

i.e. the deviation of Mi
2 from the pole mass (squared) M0

2 scales with Γi !

P =

and fix P0 by

use M2 as an independent variable
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On-shell limit

<=>

‚Vacuum‘ spectral function with constant or mass 

dependent width G:

i.e. spectral function AXP does NOT change the 

shape (and pole position) during propagation 

through the medium

❑ Γ(X,P) → 0
quasiparticle approximation :  

AXP = 2 p d(P2-M0
2)

Backflow term - which incorporates the off-shell behavior in the particle propagation -

vanishes !

Hamiltons equation of motion   (independent on Γ) ➔ BUU limit !

❑ Γ(X,P) such that

E.g.: Γ = const

G=Γvacuum (M)

0Γa nd0Γ PX ==

W. Cassing, Eur. Phys. J.  ST 168 (2009) 3
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Model cases 

stable particle

energy

momentum

mass

Imag.

Real

unstable particle

Imag.

Real

energy

mass

momentum

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

Propagation of stable (left) and unstable (right) particles in complex potential with real 

part (atractive) and strong negative imaginary part.



Remarks on mean-field potential in off-shell transport models

Interacting relativistic particles have a complex self-energy:

ret

XP

ret

XP

ret

XP ImiRe SSS +=

❑ By dispersion relation (Kramers–Kronig relation) we get a contribution to 

the real part of self-energy:

)pq(

)q(Im
dq)p(Re

0

ret

XP

0

0

ret

XP
−

= 


S
S

which gives a mean-field potential UXP via: XP00

ret

XP Up2)p(Re =S

❑ Many-body theory:

❑ The collision width G coll is determined from the loss term of the collision integral Icoll

GSG 0

ret

XPXP p2Im =−=The neg. imaginary part is related via G = Gcoll+Gdec

➔ The complex self-energy relates in a self-consistent way to the self-generated 

mean-field potential and collision width (inverse lifetime)

2MPX

2

collcoll )N,MP(X,Γ)loss(I 


=−

to the inverse livetime of the particle ~1/G . 
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• For each particle species i (i = N, R, Y, p, r, K, …) the phase-space  density fi 

follows the BUU transport equations 

➢ with collision terms Icoll describing elastic and inelastic hadronic reactions:  

baryon-baryon, meson-baryon, meson-meson, formation and decay of baryonic and 

mesonic resonances, string formation and decay (for inclusive particle production:     

BB → X , mB →X,  mm →X,  X =many particles)

➢ with propagation of particles in self-generated mean-field potential

U(p,r)~Re(Sret)/2p0

• Numerical realization – solution of classical equations of motion + Monte-Carlo 

simulations for test-particle interactions

‚On-shell‘ transport models

( ) ( ) )f,...,f,(fIt),p,r(fUU
t

M21co lliprrp
=








−+





Basic concept of the ‚on-shell‘ transport models (VUU, BUU, QMD, SMASH etc. ):

1) Transport equations =  first order gradient expansion of the Wigner 

transformed Kadanoff-Baym equations 

2) Quasiparticle approximation  or/and vacuum spectral functions : 

A(X,P) = 2 p d(p2-M2)                                   Avacuum(M) 
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Problems in the treatment of short-lived resonances in the 

on-shell semi-classical transport models

Problem: 

dynamical changes of spectral function by propagation through the medium are 

NOT included in the ‚on-shell‘ semi-classical transport equations !

 the resonance spectral function can be changed only due to explicit collisions 

with other particles in ‚on-shell‘ semi-classical transport models !

Reason for the problem: 

backflow term*  is missing in the explicit ‚on-shell‘ dynamical equations  since 

this backflow term vanishes in the on-shell limit, however, does NOT vanish in 

the off-shell limit (i.e. becomes very important for the dynamics of broad 

resonances)! 

W. Cassing et al., NPA 665 (2000) 377

drift term Vlasov term

‚loss‘ term ‚gain‘ term

Operator  <> - 4-dimentional generalizaton 

of the Poisson-bracket

backflow term

* Generalized transport equations

15
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Short-lived resonances in semi-classical transport models
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BUU: M. Effenberger et al, PRC60 (1999)

( )
,

ρ)p,(M ,MΓ)R eΣM(M

ρ)p,(M ,ΓM

π

2
ρ)p,A(M

2

to t

ret2

0

2

to t

2

+−−
=, width G ~ −Im Sret /M  

Spectral function:

Example :  

r-meson propagation through the medium 

within on-shell BUU model

Problem: broad in-medium spectral function 

does not become on-shell in vacuum in 

‚on-shell‘ transport models!



Off-shell vs. on-shell transport dynamics
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The off-shell spectral function 

becomes on-shell in the vacuum 

dynamically by propagation 

through the medium!

Time evolution of the mass distribution of r and  mesons for central C+C 

collisions (b=1 fm) at 2 A GeV for dropping mass + collisional broadening scenario

E.B. &W. Cassing, NPA 807 (2008) 214

On-shell BUU:

low mass r and  mesons live  

forever (and shine ‚fake‘ dileptons)!

On-shell Off-shell
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In-medium

r >> r 
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Collision term in off-shell transport models

Collision term for reaction 1+2->3+4:

with

The trace over particles 2,3,4 reads explicitly

for fermions for bosons

The transport approach and the particle spectral functions are fully 

determined once the in-medium transition amplitudes G are known in 

their off-shell dependence!

additional integration

‚loss‘ term‚gain‘ term



In-medium transition rates: G-matrix approach

Need to know in-medium transition amplitudes G and their off-shell

dependence

Coupled channel G-matrix approach

Transition probability :

with G(p,r,T)  - G-matrix from the solution of coupled-channel equations:

G

•Baryons: Pauli blocking 

and potential dressing

• Meson selfenergy and 

spectral function

▪

For strangeness: 

D. Cabrera, L. Tolos, J. Aichelin, E.B., PRC C90 (2014) 055207;  W. Cassing, L. Tolos, E.B., A. Ramos, NPA727 (2003) 59
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Brueckner theory

)(]GG[ 432

4

4321 d −−++→+

+

Transition rate for the process 1+2→3+4 

in the medium follows from many-body Brueckner theory:

1) 2-body scattering in vacuum:

Scattering amplitude:

with the hamiltonian:

)E(T
i)2(t)1(tE

1
VV)E(T

+−−
+=


<=

+=
ji

A

1i

)ij(V
2

1
)i(tH

1p
2p

1p 2p

)E(T

1p
2p

1p 2p

)12(V

1p
2p

1p 2p

)12(V

)12(V

3p
3p + ...+

‚ladder‘ resummation
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Brueckner theory

2)  2-body scattering in the medium:

Scattering amplitude → from Brueckner theory:

with single-particle hamiltonian:

)E(G)nn1(
i)2(h)1(hE

1
VV)E(G 33

−−
+−−

+=


)1(U)1(t)1(h
MF+=

1p
2p

1p 2p

)E(G

1p
2p

1p 2p

)12(V

1p
2p

1p 2p

)12(V

)12(V

3p
3p + ...+

Pauli-blocking

n3 – occupation number

Note: vacuum case  : matrixTmatrixG0nnand)1(t)1(h 33 −→−===

Propagation between scattering V(12) with mean field hamiltonian h(1), h(2)

! only allowed if intermediate states 3,3‘ are not accupied !
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Example: Transition probabilities for pY→ K-p  (Y = L,S)

• With pion dressing: 

L(1405) and S(1385) melt away

with baryon density

❑ K
-

absorption/production from 

pY collisions are strongly 

suppressed in the nuclear 

medium

! pY is the dominant channel for K
-

production in heavy-ion collisions !
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W. Cassing, L. Tolos, E.L.B., A. Ramos, NPA 727 (2003) 59

Coupled-channel G-matrix approach

provides in-medium transition 

probabilities for different channels, 

e.g.   pY→ K-p  (Y = L,S)

L. Tolos et al., NPA 690 (2001) 547

22



23

KB dynamics for strongly interacting systems

Many-body theory:

Strong interaction ➔ large width = short life-time

➔ broad spectral function ➔ quantum object

▪ KB equations describe the dynamics of broad strongly interacting 

quantum states 

➔ transport theory for strongly interaction systems

❑ semi-classical BUU

❑ generalized off-shell transport equations based on Kadanoff-Baym 

dynamics

➔ Numerical realization: transport codes 

first order gradient expansion of quantum Kadanoff-Baym

equations

In-medium effects (on hadronic or partonic levels!) = changes of particle 

properties in the hot and dense medium 

Example: hadronic medium - vector mesons, strange mesons

QGP – ‚dressing‘ of partons 



Goal: microscopic transport description of 

the partonic and hadronic phase of HIC

Problems:
❑ How to model a QGP phase in line with lQCD data?

❑ How to solve the hadronization problem?

Ways to go:

‚Hybrid‘ models:

▪ QGP phase: hydro with QGP EoS

▪ hadronic freeze-out: after burner -

hadron-string transport model

➔ Hybrid-UrQMD

▪ microscopic transport description of the partonic 

and hadronic phase in terms of strongly interacting 

dynamical quasi-particles and off-shell hadrons

➔ PHSD

pQCD based  models:

▪ QGP phase: pQCD cascade

▪ hadronization: quark coalescence 

➔ AMPT, HIJING, BAMPS
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Dynamical models for HIC

Macroscopic Microscopic

‚Hybrid‘
QGP phase: hydro with QGP EoS 

▪ hadronic freeze-out: after burner -

hadron-string transport model

(‚hybrid‘-UrQMD, EPOS, …)

fireball models:
▪ no explicit dynamics: 

parametrized time 

evolution (TAMU)

ideal
(Jyväskylä,SHASTA,

TAMU, …) 

Non-equilibrium microscopic transport models –

based on many-body theory

Hadron-string 

models
(UrQMD, IQMD, HSD, 

QGSM, SMASH …)

Partonic cascades

pQCD based
(Duke, BAMPS, …)

Parton-hadron models:

▪ QGP: pQCD based cascade

▪ massless q, g

▪ hadronization: coalescence

(AMPT, HIJING)

▪ QGP: lQCD EoS

▪ massive quasi-particles

(q and g with spectral functions) 

in self-generated mean-field

▪ dynamical hadronization

▪ HG: off-shell dynamics

(applicable for strongly interacting

systems) 

viscous
(Romachkke,(2+1)D VISH2+1, 

(3+1)D MUSIC,…)

hydro-models:
▪ description of QGP and hadronic phase

by hydrodynamical equations for fluid

▪ assumption of local equilibrium

▪ EoS with phase transition from QGP to HG

▪ initial conditions (e-b-e, fluctuating)
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