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2. Quantum field theory
= Kadanoff-Baym dynamics
= generalized off-shell transport equations



¥ Kadanoff-Baym equations of motion for G=
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Kadanoff-Baym equations include:

- the influence of the mean-field on the particle propagation generated by
the tadpole diagram

- as well as scattering processes as inherent in the sunset diagram.




Wigner transformation of the Kadanoff-Baym equation

» do Wigner transformation of the Kadanoff-Baym equation
Fxp = / d(x—y) ePr@ ") F,,

For any function Fyy with X=(x+y)/2 — space-time coordinate, P — 4-momentum

Convolution integrals convert under Wigner transformation as

4/ . AP, (aH —yH , — T =T ;
/d- (x—y) eTnt Fi,. ©Fy., = ¢ Fipx Fypx
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Operator < is a 4-dimentional

: _ an infinite series in the differential operator<
generalizaton of the Poisson-bracket:

B O °) 2 T) 2 ) i) o
Uity = 2(0)(# oPe — ob, 0)@-)

» consider only contribution up to first order in the gradients
= a standard approximation of kinetic theory which is justified if the gradients in
the mean spacial coordinate X are small



From Kadanoff-Baym equations to transport equations

» separate all retarded and advanced quantities — Geen functions and
self- energies - into real and imaginary parts:

i

, , _ 7
Sr%g,adt, — Re g;ejtj T SleP ‘ Z;ftpadl — Re ErAeED - §FXP
The imaginary part of the retarded The imaginary part of the selfenergy
propagator is given by the corresponds to the W|qlth Iyp; |
normalized spectral function Ayp: then from Dyson-Schwinger equation:
2 _ M2 _— yoret
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fThe spectral function Ayp in first order gradient expansion (for bosons) :
don — I'xp
y CXPT (P2 MZ — Rexieh)? + I%p/4

The real part of the retarded propagator in first order gradient expansion :

P? — M2 — Rexye,
= (P2 = MZ — Rexigh)? + I%,/4
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\.

Axp and ReZyp"® in first order gradient expansion depend ONLY on Zyp"t !



From Kadanoff-Baym equations to
generalized transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym
equations and separation into the real and imaginary parts one gets:

Generalized transport equations (GTE):

drift term Vlasov term backflow term collision term = -,loss‘ term
)

P — M} — ReSh} {(S3p) — [0{S5p ) (ReSKbY = | (935555 — S5p Sip)

Backflow term incorporates the off-shell behavior in the particle propagation
I vanishes in the quasiparticle limit Axp 2 8(p>-M?)

() GTE: Propagation of the Green‘s function iS*,,=A,-N,p, Which carries
information not only on the number of particles (Nxp), but also on their properties,
Interactions and correlations (via Axp)

I'xp
— M§ — Re¥%L)? + Tk p/4

O Spectral function: Axp = (P2

— ret _ - H ‘ H 4-dimentional generalizaton of the Poisson-bracket:
I',=-Im2,;=2p," —,width‘ of spectral function
= reaction rate of particle (at space-time position X) S{E B} = é(%% - %%)
D 0]

hiC
Q Life time 7= T W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445



From Kadanoff-Baym equations to
transport equations

After the first order gradient expansion of the Wigner transformed Kadanoff-Baym
equations and separation into the real and imaginary parts one gets:

1. Generalized transport equations:

drift term Vlasov backflow term collision term = - ,gain‘

O(P* — M~ ReSKp} {Sip) — O{Z%p) {ReSih) = [Skp S%p — Sip St

/'

Backflow term incorporates the off-shell behavior in the particle propagation
I vanishes in the quasiparticle limit

2. Generalized mass-shell equations:

(P2 — M§ — ReX¥p] S5p — Exp ReSYp = G O iAp ) — SO {5kp )

I Egs. (1) and (2) are not fully consistent = differ by higher order gradient
terms since (1) contains ReSy " in the backflow term

4-dimentional generalizaton of the Poisson-bracket:
((')F| aF oF (')Fg)

1
o b} o= S :
{FH Y 0X, apr 0P, dX#
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From Kadanoff-Baym equations to transport equations

The Botermans-Malfliet solution (1990):
» separate spectral information from occupation density:
N -number distribution

7 S;P = Nyp Axp. 7 5-;9 = (1 4+ Nxp) Axp A - s.pectral function .
I'- width of spectral function =
ATD ATE | : :
7 Z;P = *'\'XP I'sxp, 7 Z;{P = (1 + i\-Xp)l“Xp reaction rate of particle

(at phase-space position XP)
Greens function S<characterizes the number of particles (N)
and their properties (A — spectral function )

non-equilibrium corrections

»rewrite Y3, = —ilxpNyp = —ilxp Nxp + Cxp
With v, = —iTyp (N, — Nyp) = i (S50 5%p — S3p S5p) Axh
- ,correction term* = collision term /Axp

of 2nd gradient orders -> have to be omitted for consistency !
- as a consequence: N>—>N, X<->S<-T/A

= Generalized transport equations can be written:

1 _
Axplxp| O { P = M} = ReS5h} {S5p ) — 5 © { T} { (P2 = Mj — RSy ) Sp )

= [“‘XP bXP o “XP bXP]

I now consistent in gradient order with the mass-shell equation ! =2 used in PHSD



.N. General testparticle off-shell equations of motion

W. Cassing , S. Juchem, NPA 665 (2000) 377; 672 (2000) 417; 677 (2000) 445

) Employ testparticle Ansatz for the real valued quantity i S<,; -

_'i'\'T
Fxp =AxpNxp=iS5p ~ 3 09X — Xi(t)) 6P — Bi(t)) o(P — (1))
=1

insert in generalized transport equations and determine equations of motion !

= General testparticle ,Cassing-Juchem off-shell equations of motion‘
for the time-like particles:

dxX. 1 . — ReXret
: = — |2P /b ReXS ) U/l ,
dt 1-— C{ji] 26{ * ng ‘ VP t .
P, 11 |- — ReXff
— = _ — |V Rexret QR P
pr =0, o Vx, ReX;™ + ] !
de, 1 1 [0ReXyy (% —P?— M — ReS( ar)
7 [ Cy2 | o ;

— M2 — ReXyet 9

— 1,

Note: the common factor 1/(1-C;) can be absorbed in an ,eigentime‘ of particle (i) !



Limiting cases

a (X,P)=r(X) -width depends only on space-time X:
P=(p, P)

use M2 as an independent variable M? = P? — ReX"

and fix P, by P,jz = P2 + M? + REE;?%ME =>

lowe. dM?  M? — M2 dTg,
Ollows. it T, dat

i.e. the deviation of M;? from the pole mass (squared) My?scales with I !
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On-shell limit

Q IX,P)>0 - o
| - quasiparticle approximation :
AP S P = RS + TR/ Axp = 2 p 8(P>-Mp?)
d I'(X,P) such that ,\Vacuum’ spectral function with constant or mass
v,I=0 and V,I'=0 dependent width T

I.e. spectral function Ayr does NOT change the
shape (and pole position) during propagation
through the medium

Y

Backflow term - which incorporates the off-shell behavior in the particle propagation -
vanishes !

E.g.: ' =const
I'=l'vacuum (M)

dfé
dt

|:> Hamiltons equation of motion (independent on ') =» BUU limit !

W. Cassing, Eur. Phys. J. ST 168 (2009) 3 11



Model cases

Propagation of stable (left) and unstable (right) particles in complex potential with real
part (atractive) and strong negative imaginary part.
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Remarks on mean-field potential in off-shell transport models

 Many-body theory: Interacting relativistic particles have a complex self-energy:

2w =ReZio+ilmXy

The neg. imaginary part I, =-Im2X; =2p,I" is related via I'= I+ yec
to the inverse livetime of the particle t~1/T".

O The collision width I, is determined from the loss term of the collision integral Iy

- IcoII(IOSS)= FCOH(X,F_S,M ’ )N XP M?2

O By dispersion relation (Kramers—Kronig relation) we get a contribution to
the real part of self-energy:

¢, ImXZa(q)
ReXn(p,)=P|dg—2-2
e '! (q_po)

which gives a mean-field potential Uyp via: Rez;e;( Po)=2P.Uyp

= The complex self-energy relates in a self-consistent way to the self-generated
mean-field potential and collision width (inverse lifetime)

13



." ,On-shell transport models

Basic concept of the ,on-shell‘ transport models (VUU, BUU, QMD, SMASH etc. ):

1) Transport equations = first order gradient expansion of the Wigner

transformed Kadanoff-Baym equations
2) Quasiparticle approximation or/and vacuum spectral functions :

A(X’P) =2 p 6(pz'Mz) Avacuum(M)

® For each particle species i (i=N, R, Y, &, p, K, ...) the phase-space density f;
follows the BUU transport equations

(;—t-i- (VBU) VF _(VFU) Vajf|(FaE1t) - Icoll(fl’fZ""1fM)

with collision terms lcon describing elastic and inelastic hadronic reactions:
baryon-baryon, meson-baryon, meson-meson, formation and decay of baryonic and
mesonic resonances, string formation and decay (for inclusive particle production:
BB 2> X, mB 2X, mm 22X, X=many particles)

with propagation of particles in self-generated mean-field potential

U(p,p)~Re(Z")/2p,

® Numerical realization — solution of classical equations of motion + Monte-Carlo

simulations for test-particle interactions
14



Problems in the treatment of short-lived resonances in the
on-shell semi-classical transport models

Problem:
dynamical changes of spectral function by propagation through the medium are
NOT included in the ,on-shell‘ semi-classical transport equations !

— the resonance spectral function can be changed only due to explicit collisions
with other particles in ,on-shell‘ semi-classical transport models !

Reason for the problem:

backflow term* is missing in the explicit ,on-shell* dynamical equations since
this backflow term vanishes in the on-shell limit, however, does NOT vanish in
the off-shell limit (i.e. becomes very important for the dynamics of broad
resonances)!

* - -

Generalized transport equations
Operator <> - 4-dimentional generalizaton
of the Poisson-bracket

— M2E _ pevre a5 _ } 3 , et 1 /8Fn aF ar 8F
{}{FE _ID el i 55p | G ’ {}{Fj}{Fﬂ}:E(ﬁXP i _"_‘.'.l’-'jJ AXH

drift term Vlasov term

— =[S Sip — DipSiel,
2 : —— backflow term
,gain‘ term W. Cassing et al., NPA 665 (2000) 377
15



.‘ Short-lived resonances in semi-classical transport models

Spectral function:

2 Mzrtot(M’p’ p)

AM,p,p) =—
1 ] 2 2 t 2 !
# (M?-M2-Rex™)+(MI,(M,p,p))
In-medium:
production of broad states
y | ] In-medium
10° [ o spectral function p/p0—5 .
10' [ :E{
2 10° [ I !
< 0
10:1 [ p >> po 10°
0.0 0.2 0.4 :/.IG [Ge\(;;icz] 1.0 12 1.4 1.6 |
F
10" |
Example : s |
p-meson propagation through the medium g oL
within on-shell BUU model s
Problem: broad in-medium spectral function 8 10t b
does not become on-shell in vacuum in

;on-shell‘ transport models!

2
10° |

10' [

0
10° [

width " ~—Im X /M

Vacuum (p =0)
narrow states

® spectral function

plp,=0 ]

0.0

0.2

0:4 0:6 0:8 1j0 1:2
M [GeV/c’]

14

16

= hare mass

12Pb > pX > e'e’ X

E7=1.5 GeV

== COll. broadening

10

01 02 03 04 05 06 07 08 09 1.0
M [GeV]

BUU: M. Effenberger et al, PRC60 (1999)

11
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In-medium
P >>Po

Off-shell vs. on-shell transport dynamics

Time evolution of the mass distribution of p and ® mesons for central C+C

collisions (b=1 fm) at 2 A GeV for dropping mass + collisional broadening scenario

AM1 ' = !
(M.p.0) T (M? - M} —ReZ™)+(MT,(M,p, p))

2 MZrtOt(M’p’ p)

width T'~—Im Zrt/M

AM)

10° _I dropping mass + collisional broadening I_,_

w0 [ |
1
10 |

w' |

1w’

p meson

10’

0.0 0.z 04 0.6 0.8 1.0 12 14 1.6 1.8 20
M [GeVic']
On-shell BUU:

low mass p and ® mesons live
forever (and shine ,fake’ dileptons)!

The off-shell spectral function
becomes on-shell in the vacuum
dynamically by propagation
through the medium!

dN/dVM/ja.u.]

lo2]

| ®-meson
I on-shell

On-shell Off-shell

C+C, 2.0 A GeV, b=1fm
dropp. mass + coll. broad.

|| p-meson §-- — 05
on-shell o
E 0.61"
3
Z 041"
<=

dN/dM [a.u.]
288

E.B. &W. Cassing, NPA 807 (2008) 214

p-meson |
|7 off-shell




_'N' Collision term in off-shell transport models

Collision term for reaction 1+2->3+4:

Loy (X, P, M?) = TroTrsTryA(X, P, M2 A(X, Py, M2)A(X, Py, M2)A(X, Py, M?)

|G((P, M?) + (Py, M?) — (Py, M2) + (Py, M}) % s 0P+ P — P — Iy)

[ Nx oz Nxpoarz Fxoae Fxmnz = Nxpae Nxpoz Fxpoe Fxpoz |

,JJoss‘ term
With  fypue =1+ 17 Nypae and n = +1 for bosons/fermions, respectively.

The trace over particles 2,3,4 reads explicitly
for fermions for bosons

1 . _
9 UZ“;z (2}'1’)4/*' 2 Try = mZ;z (2n )3 /rﬂ P

additional integration

The transport approach and the particle spectral functions are fully
determined once the in-medium transition amplitudes G are known in
their off-shell dependence!

18



.”' In-medium transition rates: G-matrix approach

Need to know in-medium transition amplitudes G and their off-shell

dependence (5, ar2) 1 (By, M2) — (B M2) + (P, M) s
Coupled channel G-matrix approach

Transition probability :

Prio3i4(s) = / d cos(0) (251 + 1

1
)(259 + 1)

g2 ¢

with G(p,p,T) - G-matrix from the solution of coupled-channel equations:

=== ® Meson selfenergy and
) spectral function
————————— .Baryons: Pauli blocking

and potential dressing
Tij(p,T) = Vij + Vy Gi(p, T) Ti5(p, T)

For strangeness:

D. Cabrera, L. Tolos, J. Aichelin, E.B., PRC C90 (2014) 055207; W. Cassing, L. Tolos, E.B., A. Ramos, NPA727 (2003) 59 19



Brueckner theory

4
Transition rate for the process 1+223+4 [G'G liosas 6 (I +1T,-1I,-11,)
in the medium follows from many-body Brueckner theory:

1) 2-body scattering in vacuum:

1
' i - T(E)=V+V T(E
Scattering amplitude: (E) E—t(1)-t(2)+in (E)

A

1 .

with the hamiltonian: H=Zt(|)+EZV(IJ)
i=1

i<]

: , , o P;
P, P, P, P, V(12)
v(12) -
E _ + p3 _ p3 + ]
V(12)
P, P, P, P,

P P,

Jadder‘ resummation

20



Brueckner theory

2) 2-body scattering in the medium:

Scattering amplitude = from Brueckner theory:

1 :
G(E)=V +V E_h(L)—h(2)+i7 (1-n,-n;)G(E)

Pauli-blocking
Ny —occupation number

with single-particle hamiltonian: h(1)=t(1)+U™ (1)

Note: vacuum case : h(1)=t(1)and n,=n;=0 = G -matrix > T - matrix

o P P, P, P V(12) &
= V£1_2) 4 Ps) s+ ...
V(12)
P, P, Py P P, P,

Propagation between scattering V(12) with mean field hamiltonian h(1), h(2)
| only allowed if intermediate states 3,3 are not accupied !

21



Example: Transition probabilities for tYE2> Kp (Y = AY)

TA->Kp
-+ with 1t dress.

L. Tolos et al., NPA 690 (2001) 547

mA->Kp
"I no mdress. >

Coupled-channel G-matrix approach
provides in-medium transition
probabilities for different channels,
e.g. nY€2>Kp (Y=AX) @

P N W s~ 0o N

With pion dressing:
A(1405) and Z(1385) melt away
with baryon density

0.0

= “““ :
foS = -“’.“'-
." "““““‘ g

“‘,'.-r-""":x
N <<

O K absorption/production from
nY collisions are strongly
suppressed in the nuclear
medium

I 7Y is the dominant channel for K~
production in heavy-ion collisions !

W. Cassing, L. Tolos, E.L.B., A. Ramos, NPA 727 (2003) 59
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KB dynamics for strongly interacting systems

In-medium effects (on hadronic or partonic levels!) = changes of particle
properties in the hot and dense medium
Example: hadronic medium - vector mesons, strange mesons

QGP — ,dressing‘ of partons

Many-body theory:
Strong interaction =¥ large width = short life-time
=» broad spectral function = quantum object

= KB equations describe the dynamics of broad strongly interacting

guantum states
=» transport theory for strongly interaction systems

O semi-classical BUU

first order gradient expansion of quantum Kadanoff-Baym
equations

U generalized off-shell transport equations based on Kadanoff-Baym
dynamics

=» Numerical realization: transport codes
23



Goal: microscopic transport description of “"Q . °% 00,
the partonic and hadronic phase of HIC 0, 50

. How to model a QGP phase in line with IQCD data?
Problems:

O How to solve the hadronization problem?

Ways to qo:

pQCD based models: ,Hybrid‘ models:
= QGP phase: pQCD cascade = QGP phase: hydro with QGP EoS

= hadronization: quark coalescence = hadronic freeze-out: after burner -
hadron-string transport model
= AMPT, HIJING, BAMPS

= Hybrid-UrQMD

v

® microscopic transport description of the partonic
and hadronic phase in terms of strongly interacting
dynamical quasi-particles and off-shell hadrons

= PHSD

24



Dynamical models for HIC

e

Macroscopic /

hydro-models:
= description of QGP and hadronic phase
by hydrodynamical equations for fluid
= assumption of local equilibrium
= EoS with phase transition from QGP to HG
= initial conditions (e-b-e, fluctuating)

ideal Viscous

\ Microscopic

Non-equilibrium microscopic transport models —
based on many-body theory

Partonic cascades
pQCD based

(Duke, BAMPS, ...)

Hadron-string

models
(UrQMD, IQMD, HSD,
QGSM, SMASH ...)

Parton-hadron models:

* QGP: pQCD based cascade
" massless g, g
= hadronization: coalescence

* QGP: IQCD Eo0S

(Jyvaskyla,SHASTA, (Romachkke,(2+1)D VISH2+1,
TAMU, ...) (3+1)D MUSIC,...)
(AMPT, HIJING)
- H ‘
fireball models: Hybrid

" no explicit dynamics:
parametrized time

evolution (TAMU)
(;hybrid-UrQMD, EPOS, ...)

QGP phase: hydro with QGP EoS
= hadronic freeze-out: after burner -
hadron-string transport model

o

* massive quasi-particles
(q and g with spectral functions)
in self-generated mean-field

= dynamical hadronization

= HG: off-shell dynamics

(applicable for strongly interacting

systems)

25
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