Lecture-4: Non-equilibrium Dynamics

Non-equilibrium Dynamics of the Chiral/Deconfinement Phase Transition

Igor N. Mishustin

Frankfurt Institute for Advanced Studies, J.W. Goethe Universität, Frankfurt am Main

FIAS Frankfurt Institute for Advanced Studies

Contents

- **Introduction: Effects of fast dynamics**
- **Effective thermodynamic potential**
- **Fluctuations of order parameter**
- **Chiral fluid dynamics with dissipation and noise**
- **Extension to finite baryon densities**
- **Dynamical domain formation in 1st order tansition**
- **Conclusions**

Phase diagram of strongly-interacting matter

Such a phase diagram is still a beautiful dream! We hope that future FAIR-NICA experiments will help to establish what is the reality.

Effects of fast dynamics

Effective thermodynamic potential for a 1st order transition

between two competing phases disappears - spinodal decomposition **I. Mishustin, Phys. Rev. Lett. 82 (1999) 4779; Nucl. Phys. A681 (2001) 56**

Equilibrium fluctuations of order parameter in 1st order phase transition

In an equilibrated system fluctuations of the order parameter, i.e. Polyakov loop, should demonstrate bi-modal distributions (lattice calculations?);

In a rapidly evolving system these fluctuations will be out of equilibrium;

During supercooling process strong fluctuations may develop in the form of droplets of a metastable phase.

Rapid expansion through a 1st order phase transition

The system is trapped in a metastable state until it enters the spinodal instability region, when Q phase becomes unstable and splits into droplets

Csernai&Mishustin, 1995; Mishustin, 1999; Rafelski et al. 2000; Randrup, 2003; Peach&Stoecker, 2003; Stephanov, 2005, 2009; Steinheimer&Randrup 2013; Nahrgang, Herold, Mishustin, Bleicher, 2013-p.t.; Liang, Li, Song, 2016-p.t.. …

Evolution of equilibrium fluctuations in 2nd order phase transition $T>T_c$ 0 T_c $T=T_c$ 0 of equilibrium fluctu

order phase transitie
 $\frac{1}{2} + \frac{1}{2}b(\nabla \phi)^2 + \frac{\lambda}{4} \phi^4$, $a(T) = a_0$ Evolution of equilibrium fluctuation

in 2nd order phase transition
 $\overline{(\phi)} = \frac{1}{2} a(T) \phi^2 + \frac{1}{2} b(\nabla \phi)^2 + \frac{\lambda}{4} \phi^4$, $a(T) = a_0 (T - T_c)$ **ution of equilibr

in 2nd order phas**
 $\frac{1}{2}a(T)\phi^2 + \frac{1}{2}b(\nabla \phi)^2 + \frac{\lambda}{4}$
 $\frac{T}{2}$, $T < T$ and $\langle \phi \rangle = 0$. **lution of equilibrium fluttion 2nd order phase trandom**
 $\frac{1}{2}a(T)\phi^2 + \frac{1}{2}b(\nabla \phi)^2 + \frac{\lambda}{4}\phi^4$, $a(T\frac{T}{\lambda})$, $T < T_c$ and $\langle \phi \rangle = 0$, $T > T_c$, **In 2nd order phase transition**
 $\Omega(\phi) = \frac{1}{2} a(T) \phi^2 + \frac{1}{2} b(\nabla \phi)^2 + \frac{\lambda}{4} \phi^4$, $a(T) = a_0 (T - T_c)$
 $\langle \phi \rangle = \frac{a(T)}{\lambda}$, $T < T_c$ and $\langle \phi \rangle = 0$, $T > T_c$, $\delta \phi = \phi - \langle \phi \rangle$

Distribution of fluctuations $P(\delta \phi) \Box \exp \left[-\frac$ *c* **a Theory in the India

a** 2nd order phase transition
 $a(T)\phi^2 + \frac{1}{2}b(\nabla \phi)^2 + \frac{\lambda}{4}\phi^4$, $a(T) = a_0(T - T_{\phi})$ **Evolution of equilibrium fluctuations**
 in 2nd order phase transition
 $Q(\phi) = \frac{1}{2} a(T) \phi^2 + \frac{1}{2} b(\nabla \phi)^2 + \frac{\lambda}{4} \phi^4$, $a(T) = a_0 (T - T_c)$
 $\langle \phi \rangle = \frac{a(T)}{\lambda}$, $T < T_c$ and $\langle \phi \rangle = 0$, $T > T_c$, $\delta \phi = \phi - \langle \phi \rangle$ *V P T* λ **Evolution of equilibrium fluctuations**

in 2nd order phase transition
 $\Omega(\phi) = \frac{1}{2} a(T) \phi^2 + \frac{1}{2} b(\nabla \phi)^2 + \frac{\lambda}{4} \phi^4$, $a(T) = a_0 (T - T_c)$ λ $\delta \phi$) \Box exp $\Big| -\frac{\Delta \Omega(\delta \phi)}{\pi}$ volution of equilibrium fluctuations

in 2nd order phase transition
 ϕ)= $\frac{1}{2}a(T)\phi^2 + \frac{1}{2}b(\nabla \phi)^2 + \frac{\lambda}{4}\phi^4$, $a(T) = a_0(T - T_c)$

= $\frac{a(T)}{\lambda}$, $T < T_c$ and $\langle \phi \rangle = 0$, $T > T_c$, $\delta \phi = \phi - \langle \phi \rangle$ sition $a_0(T-T_c)$
 $\phi = \phi - \langle \phi \rangle$
 $\left[-\frac{\Delta \Omega(\delta \phi) V}{T} \right]$ = $a_0(T - T_c)$
 $\phi = \phi - \langle \phi \rangle$
 $\left[-\frac{\Delta \Omega(\delta \phi)V}{T} \right]$ ϕ

In rapidly expanding system critical fluctuations have not sufficient time to develop

Critical slowing down in the 2nd order phase transition

 ϕ $\tau_{\scriptscriptstyle\rm rel}$ $d\delta$ *dt* $\delta \phi$ $\partial \Omega$ $\delta \phi$ γ $\partial \Omega$ $\mathcal{L}^{\mathcal{L}}$ $-\gamma$ —— \approx — \widehat{O}

In the vicinity of the critical point the relaxation time for the order parameter diverges - no restoring force

$$
\tau_{\text{rel}}(T) \Box \frac{1}{\left|T - T_c\right|^{\nu}} \to \infty, \quad \nu \Box \ 2
$$

(Landau&Lifshitz, vol. X, Physical kinetics)

"**Rolling down" from the top of the potential is similar to spinodal decomposition**

Critical slowing down 2

B. Berdnikov, K. Rajagopal, Phys. Rec. D61 (2000)

Critical fluctuations have not enough time to build up. One can expect only a factor 2 enhancement in the correlation length even for slow cooling rate, dT/dt=10 MeV/fm.

Scavenius, Mocsy, Mishustin&Rischke, Phys. Rev. C64 (2001) 045202

Linear sigma model (LσM) with constituent quarks

Simple model for chiral phase transition
\nScavenius, Moesy, Mishustin&Rische, Phys. Rev. C64 (2001) 045202
\nlear sigma model (L
$$
\sigma
$$
M) with constituent quarks
\n
$$
L = \overline{q}[i\gamma\partial - g(\sigma + i\gamma_5\tau\pi)]q + \frac{1}{2}[\partial_{\mu}\sigma\partial^{\mu}\sigma + \partial_{\mu}\pi\partial^{\mu}\pi] - U(\sigma, \pi),
$$
\n
$$
U(\sigma, \vec{\pi}) = \frac{\lambda^2}{4}(\sigma^2 + \pi^2 - \nu^2)^2 - H\sigma, \langle \sigma \rangle_{\text{vac}} = f_{\pi} \rightarrow H = f_{\pi}m_{\pi}^2
$$

Effective thermodynamic potential example in Phase diagram contains contributions of mean field σ

and quark-antiquark fluid:
 $U_{\text{eff}}(\sigma;T,\mu) = U(\sigma,\pi) + \Omega_q(m;T,\mu)$ and quark-antiquark fluid:

$$
U_{\text{eff}}(\sigma;T,\mu) = U(\sigma,\pi) + \Omega_q(m;T,\mu)
$$

$$
m^2 = g^2(\sigma^2 + \pi^2), \quad \pi \approx 0
$$

$$
m^2 = g^2(\sigma^2 + \pi^2), \ \pi \approx 0
$$

CO, 2nd and 1st order chiral transitions are obtained in T-μ plane.

Effective thermodynamic potential

$$
\Omega_q(m;T,\mu) = -\nu_q T \int \frac{d^3 p}{(2\pi)^3} \left\{ \ln \left[1 + \exp\left(\frac{\mu - \sqrt{m^2 + p^2}}{T} \right) \right] + (\mu \to -\mu) \right\}, \quad \nu = 2N_f N_c
$$

First we consider μ=0 system but tune the order of the chiral

Equilibrium order parameter field

3 solutions at 122 MeV<T<132 MeV

Non-equilibrium Chiral Fluid Dynamics

I.N. Mishustin, O. Scavenius, Phys. Rev. Lett. 83 (1999) 3134;

K. Paech, H. Stocker and A. Dumitru, Phys. Rev. C 68 (2003) 044907;

M. Nahrgang, C. Herold, S. Leupold, , C. Herold, M. Bleicher, Phys. Rev. C 84 (2011) 024912; M. Nahrgang, C. Herold, S. Leupold, I. Mishustin, M. Bleicher, J. Phys. G40 055108.

Fluid is formed by constituent quarks and antiquarks which interact with the chiral field via quark effective mass $m = g\sigma$

CFD equations are obtained from the energy momentum conservation for the coupled system fluid+field

$$
\frac{\partial_{v}(T_{\text{fluid}}^{\mu\nu} + T_{\text{field}}^{\mu\nu}) = 0 \Rightarrow \partial_{v}T_{\text{fluid}}^{\mu\nu} = -\partial_{\mu}T_{\text{field}}^{\mu\nu} \equiv S^{\nu}}{S^{\nu} = -(\partial^{2}\sigma + \frac{\partial U_{\text{eff}}}{\partial \sigma})\partial^{\nu}\sigma = (g\rho_{s} + \eta\partial_{t}\sigma)\partial^{\nu}\sigma}
$$

We solve generalized e. o. m. with friction $(η)$ and noise $(ξ)$:

$$
\frac{\partial_{\mu}\partial^{\mu}\sigma + \frac{\partial U_{\text{eff}}}{\partial \sigma} + g < \frac{\pi}{qq} > + \eta \partial_{t}\sigma = \xi \quad \text{Langevin equation} \\
 < \xi(t, r) > = 0, \quad < \xi(t, r) \xi(t', r') > = \frac{1}{V} m_{\sigma} \eta \delta(t - t') \delta(r - r') \coth\left(\frac{m_{\sigma}}{2T}\right)
$$

Calculation of damping term

T.Biro and C. Greiner, PRL, 79. 3138 (1997)

M. Nahrgang, S. Leupold, C. Herold, M. Bleicher, PRC 84, 024912 (2011)

The damping is associated with the processes:

$$
\sigma \to qq, \ \sigma \to \pi\pi
$$

It has been calculated using 2PI effective action

$$
\eta = g^2 \frac{v_q}{\pi m_\sigma^2} \left[1 - 2n_F \left(\frac{m_\sigma}{2} \right) \right] \left(\frac{m_\sigma^2}{4} - m_q^2 \right)^{3/2}
$$

Around Tc the damping is due to the pion modes, η=2.2/fm

Dynamic simulations: Bjorken-like expansion

Initial state: cylinder of length L in z direction, with ellipsoidal cross section in x-y direction state: cylinder of length L in z direction, with el

on in x-y direction

At $t = 0$: $v(z) = \frac{2z}{L} 0.2c$, $-\frac{L}{2} < z < \frac{L}{2}$; $v_x = v_y = 0$; $T = 160$ gth L in z direct
 $\frac{L}{2} < z < \frac{L}{2}$; $v_x = v_y$ **z z** *z* *****z z*

At
$$
t = 0
$$
: $v(z) = \frac{2z}{L} 0.2c$, $-\frac{L}{2} < z < \frac{L}{2}$; $v_x = v_y = 0$; $T = 160$ MeV

Critical point (g=3.63) **First order (g=5.5)** First order (g=5.5) 100 average tomperature 160 average stand dev cell temperature 140 cell fluctuations 80 $Tc = 123.3MeV$ standard deviation in MeV 120 60 100 80 40 60 40 20 20 Ω 0 $\overline{2}$ 6 8 10 12 14 16 Ω time in fm

Mean values and standard deviation of T for the whole system and for a central cell (1 fm 3) are shown as a function of time.

Supercooling and reheating effects are clearly seen in the 1-st order transition, fluctuations become especially strong after 4 fm/c.

Sigma fluctuations in expanding fireball

Critical point $(g=3.63)$ First order $(g=5.5)$

Fluctuations are rather weak at critical point (left), but increase strongly at the 1^{st} order transition (right) after 4 fm/c

Extension to finite baryon densities: Polyakov-Quark-Meson (PQM) model

C. Herold, M. Nahrgang, I. Mishustin, M. Bleicher, Nucl. Phys. A 925 (2014) 14;

 \triangleright Include µ-dependence in Polyakov loop potential, (cf. Schäfer, Pawlowski, Wambach Fukushima)

$$
\mathcal{U}(\ell, T, T_0) , T_0 \to T_0(\mu)
$$

Calculate grand canonical potential for finite chemical potential

$$
\Omega_{q\bar{q}} = -2N_f T \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \left\{ (\ln \left[1 + 3\ell e^{-\beta(E-\mu)} + 3\ell e^{-2\beta(E-\mu)} + e^{-3\beta(E-\mu)} \right] + (\mu \to -\mu) \right\}
$$

 \triangleright Propagate (net) baryon density in the hydro sector

$$
\partial_{\mu}n^{\mu}=0\ ,\ \ n^{\mu}=\rho u^{\mu}
$$

Trajectories are close to isentropes for crossover and CP; Non-equilibrium "back-bending" is clearly seen in FO case; In the case of strong FO transition (solid lines) the system is trapped in spinodal region for a significant time

Dynamical droplet formation

First order Critical point

 $\overline{4}$

3

 $2\frac{c}{x}$

 $\mathbf{1}$

 Ω

4

3

 $2\frac{c}{c}$

 $\mathbf{1}$

 Ω

25

25

Splash of a milk drop

HEE-NC-57001

Observable signatures of highdensity domains

Azimuthal fluctuations of net-B In single events: strong enhancement at first order PT High harmonics of baryonic flow (averaged over many events): $v_{\sf n}$ =<cos[n(ϕ – ϕ $_{\sf n}$)]>

Father developments

 In the previous calculations the EOS had a P=0 point at a finite baryon density (like the MIT bag model), that makes possible stable quark droplets

 It is interesting to see what happens in a more realistic case when quark droplets are unstable at zero pressure (J. Steinheimer et al, PRC 89 (2014) 034901)

 There exist several models which have such a property, in particular so called Quark-Hadron Model (S. Schramm et al.) or Quark-Dilaton Model (C. Sasaki et al.).

SU(3) chiral quark-hadron (QH) model

V. Dexheimer, S. Schramm, Phys. Rev. C 81 (2010) 045201

Includes: a) 3 quarks (u,d,s) plus baryon octet, b) scalar mesons (σ, ς), vector meson (ω) c) Polyakov loop (l)

$$
\mathcal{L} = \sum_i \overline{\psi}_i \left(i \gamma^\mu \partial_\mu - \gamma^0 g_{i\omega} \omega - M_i \right) \psi_i + \frac{1}{2} \left(\partial_\mu \sigma \right)^2 - U(\sigma, \zeta, \omega) - \mathcal{U}(\ell)
$$

Effective masses:

$$
M_q = g_{q\sigma}\sigma + g_{q\zeta}\zeta + M_{0q} + g_{q\ell}(1-\ell)
$$

$$
M_B = g_{B\sigma}\sigma + g_{B\zeta}\zeta + M_{0B} + g_{B\ell}\ell^2
$$

PQM vs. QHM: domain formation

Herold, Limphirat, Kobodaj, Yan, Seam Pacific Conference 2014

QH predicts domains with much higher densities!

PQM vs. QHM: density moments

In PQM density contrast grows towards freeze-out stage, but in QHM it has a maximum at the intermediate dense stage. But strong clustering effect survives even at t>15 fm/c!

Experimental signatures of droplets

Look for bumpiness in distributions of net baryons in individual events, i. e. in azimuthal angle, rapidity, transverse momentum

The bumps correspond to the emission from individual domains.

Conclusions

- \triangleright Phase transitions in relativistic heavy-ion collisions will most likely proceed out of equilibrium
- > 2nd order phase transition (with CEP) is too weak to produce significant observable effects in fast dynamics
- \triangleright Non-equilibrium effects in a1st order transition (spinodal decomposition, dynamical domain formation) may help to identify the chiral/deconfinement phase transition
- \triangleright If QGP domains (droplets) survive until the freeze-out stage, they will show up by large non-statistical fluctuations of hadron multiplicities in phase space (in single events)
- \triangleright Exotic objects like strangelets have a better chance to be formed in such a non-equilibrium scenario