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Introduction: hydrodynamic modeling of 
nuclear collisions

Ideal hydrodynamics assumes solving differential equations

expressing local energy-momentum and baryon number conservation, where                                                      

Is the energy-momentum tensor of the ideal fluid: ε is the nergy density, P-pressure and u-
collective 4-velocity.

These equations should be supplemented by 

a) equation of state (EOS) of the fluid                                                                                         

b) initial conditions: n present calculations we start from two cold nuclei approaching each 
other.

The nuclei are stabilized by the mean field and have realistic (Woods-Saxon) density 
distributions. 
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Most famous hydro models

1+1-d models: Landau, 1953 – full stopping of produced fluid in Lorenz-contracted volume; 
Bjorken, 1983 – partial transparency of colliding nuclei, delayed formation of produced 
fluid at proper time; 

;  
2+1-d models (transverse hydro + Bjorken longitudinal expansion):
Kolb, Sollfrank & Heinz, 1999; Teaney, Lauret & Shuryak, 2001; Hirano, 2002;

Full 3+1d models (starting with cold nuclei): Harlow, Amsden & Nix, 1976; Stoecker, 
Maruhn & Greiner,1979; Rischke et al, 1995; Hama et al. 2005; 

Multi-fluid models: Amsden et al, 1978; Clare & Strottman, 1986; Mishustin, Russkikh & 
Satarov, 1988; Brachmann et al, 2000; Ivanov, Russkikh & Toneev, 2006; 

Hydro-kinetic models: Bass&Dumitru, 2000; Teaney et al. 2002001, Petersen, Steinheimer, 
Bleicher at al. 2008.



EOS1: HG with excluded volume correction

hadrons
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Hadronic species included: all known hadrons with m ≤ 2 GeV, apart of f0(600)

This set Is very similar to THERMUS : Wheaton&Cleymans, hep-ph/0407174)

Satarov, Dmitriev&Mishustin: Phys. Atom. Nucl. 72 (2009) 1390



EOS2: Quark-Gluon phase within the Bag model 
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perturbative 

correction
ms= 150 MeV

B1/4=230 MeV/fm3

Tc(n=0)=165 MeV
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Phase transition HG-QGP
),(),( TPTP BQBH  Gibbs criterion for phase transition:

Compare pressures of two phases as functions of  T, μ
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Finite size of hadrons (v~1 fm^3) is crucial for PT! 



Adiabatic trajectories in T-mu anf T-n planes

Temperature increases at transition from quarks 

to hadrons. This is different compared to chiral models 

like  LσM or NJL models
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Pressure for EoS-HG and EoS-PT

In principle, EoS-PT  is “softer “ than EoS-HG

but in some density intervals P_EoS-PT > P_EoS-HG 
(mixed phase effect)



Peripheral Au+Au collision (EoS-PT)



Peripheral Au+Au collision (PT vs HG)



Velocity fields in reaction plane



Peripheral Au+Au collision (PT vs HG)



Velocity fields in transverse plane 



Energy density and baryon density in central box

Energy densities > 2 GeV/fm3 appear  at Elab >5 AGeV

during the time interval less than 5 fm/c. 

Baryon densities>10 n0 are reached at Elab>10 AGeV!



Comparison of 1-fluid and 3-fluid* models

Transparency effects are rather week at Elab<15 AGeV
(in central collisions), at higher energies they are 
noticeable only at very early times, less than 2 fm/c

*} we thank Yu.B. Ivanov for providing us with 



Dynamical trajectories of matter in central cell 1

In the equilibrium scenario the final state is not 

sensitive to the phase transition. 

Non-equilibrium effects may help to see it!



Dynamical trajectories of matter in central cell 2

The passage time through the mixed-phase 
region is very short, only about 3 fm/c: non-
equilibrium effects must be important!



Simple picture of Initial stae:1D shock wave

collision of two slabs
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Final state of matter evolution is isentropic 
expansion of quark-gluon plasma,

and finally, free streaming of  produced 

hadrons



Spatial anisotropy ε_x  
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Larger drop of ε_x  
for EoS-PT (for Elab  = 10 AGeV)

MP



Momentum anisotropy
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Excitation function of elliptic flow

The peak at Elab=10 AGeV is correlated with 
the longest time spent in the mixed phase



Hadronic spectra
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Pt spectra of produced hadrons

Low sensitivity to the EOS and freeze-out time



Proton rapidity distributions

Strong sensitivity to the EOS: more flat with PT



Summary

at  Elab ~ 10-20  AGeV

3D hydro calculations are important for understanding the 

dynamics of the matter evolution and physical conditions. 

Phase transition changes the intermediate-state dynamics but 

observables of the final state are not very sensitive to it.

Calculations with EoS-PT as compared with EoS-HG show:

Low energy program at RHIC and FAIR/NICA experiments 

may help to find traces of the deconfinement phase transition

higher momentum anisotropy 

broader nucleon rapidity distributions
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Outlook

Calculation of HBT radii

Study of photon and dilepton emission

Extension to higher energies by using fireball-like initial 
conditions

Implementing non-equilibrium hadronization scenarios : explicit 
dynamics of the order parameter, fluctuations, critical slowing down

Incorporation of the realistic freeze-out effects: hybrid hydro-
cascade approach a la Bleicher&Petersen


