The Unitary Correlation Operator Method

Hans Feldmeier
GSI Darmstadt

Thomas Neff
GSI Darmstadt

Robert Roth
TU Darmstadt
From QCD to Nuclear Structure

- finite nuclei
- few-nucleon systems
- nucleon-nucleon interaction
- hadron structure
- quarks & gluons
- deconfinement

Quantum Chromo Dynamics
Nuclear Structure
better resolution / more fundamental
From QCD to Nuclear Structure

- Quantum Chromo Dynamics
- Nuclear Structure

Better resolution / more fundamental

Solve the interacting nuclear many-body problem

Construct realistic nucleon-nucleon interaction from QCD

Realistic NN-Potentials

QCD motivated
- symmetries, meson-exchange picture
- chiral effective field theory

short-range phenomenology
- short-range parametrisation or “contact” terms

experimental two-body data
- scattering phase-shifts & deuteron properties reproduced with high precision

supplementary three-nucleon force
- adjusted to spectra of light nuclei

- Argonne V18
- CD Bonn
- Nijmegen I/II
- Chiral N3LO
- Argonne V18 + Illinois 2
- Chiral N3LO + N2LO
Potential and Proton Size

proton charge radius $\sqrt{\langle r^2 \rangle_e} = (0.81 \cdots 0.86) \text{ fm}$

Proton Charge Distribution and $S=0$, $T=1$ Potential

- proton size not small compared to interaction range
- half-density overlap at maximum attraction, overlap of tails at average NN-distance in nuclear matter
- V_{NN} not elementary
 more like atom-atom potential
- expect three-body forces
Describe basic properties of nuclear many-body system in terms of a realistic nucleon-nucleon interaction H and a many-body state $|\hat{\Psi}\rangle$

$$\langle \vec{r}_1, \vec{\sigma}_1, \tau_1 ; \vec{r}_2, \vec{\sigma}_2, \tau_2 ; \ldots ; \vec{r}_A, \vec{\sigma}_A, \tau_A | \hat{\Psi} \rangle$$

degrees of freedom: \vec{r} cm position, $\vec{\sigma}$ spin, τ isospin of each nucleon

▶ solve many-body problem

$$\hat{H} |\hat{\Psi}_n\rangle = E_n |\hat{\Psi}_n\rangle$$

▶ Exact solutions for spectra and transitions

$A = 2, 3, 4$ Fadeev, Yakubowski, Hyperspherical harmonics, …

$A \lesssim 12$ no-core SM, GFMC (for bound states only)

$A \gtrsim 12$ numerical effort beyond today’s computer
Describe basic properties of nuclear many-body system in terms of a realistic nucleon-nucleon interaction \hat{H} and a many-body state $|\hat{\Psi}\rangle$

$\langle \vec{r}_1, \vec{\sigma}_1, \tau_1 ; \vec{r}_2, \vec{\sigma}_2, \tau_2 ; \ldots ; \vec{r}_A, \vec{\sigma}_A, \tau_A | \hat{\Psi} \rangle$

degrees of freedom: \vec{r} cm position, $\vec{\sigma}$ spin, τ isospin of each nucleon

\Rightarrow solve many-body problem $\hat{H} |\hat{\Psi}_n\rangle = E_n |\hat{\Psi}_n\rangle$

\Rightarrow Exact solutions for spectra and transitions

$A = 2, 3, 4$ Fadeev, Yakubowski, Hyperspherical harmonics, …

$A \lesssim 12$ no-core SM, GFMC (for bound states only)

$A \gtrsim 12$ numerical effort beyond today’s computer

Exact many-body state $|\hat{\Psi}_n\rangle$ is terribly complicated for realistic NN-interaction.

WHY?
Introduction

- Short Range Central and Tensor Correlations
- Unitary Correlation Operator Method
 - realistic \Rightarrow correlated Hamiltonian
- Applications:
 - No-Core Shell Model
 - Hartree Fock & Pertubation
 - (Fermionic Molecular Dynamics)
- Summary and Outlook
Realistic NN-potential

$V_{NN}(\vec{r}_{12}, \vec{p}_{12} = 0, \vec{\sigma}_1, \vec{\sigma}_2, T = 0)$

- V_{NN} repulsive at small distances
 - \sim strong short-range central correlations
 nucleons cannot get closer than ≈ 0.6 fm

- V_{NN} depends strongly on orientation of $\vec{\sigma}_1, \vec{\sigma}_2$ with respect to \vec{r}_{12}
 - \sim tensor correlations
 protons and neutrons want to align their spins with \vec{r}_{12}

Problem:
Slater determinants cannot describe these correlations
Realistic NN-potential

$V_{NN}(\vec{r}_{12}, \vec{p}_{12} = 0, \vec{\sigma}_1, \vec{\sigma}_2, T = 0)$

- V_{NN} repulsive at small distances
 - \rightarrow strong short-range central correlations
 - nucleons cannot get closer than ≈ 0.6 fm
- V_{NN} depends strongly on orientation of $\vec{\sigma}_1, \vec{\sigma}_2$ with respect to \vec{r}_{12}
 - \rightarrow tensor correlations
 - protons and neutrons want to align their spins with \vec{r}_{12}

Problem:
Slater determinants cannot describe these correlations

Solution: include short-range correlations by unitary transformation (UCOM)

$$\left| \tilde{\Psi} \right\rangle = C \left| \Psi \right\rangle = C_\Omega C_r \left| \Psi \right\rangle$$

- C_r central correlator shifts nucleons out of repulsive core
- C_Ω tensor correlator aligns spins along \vec{r}_{12}
The Correlation Operator Method (UCOM) introduces short-range correlations by means of a unitary transformation with respect to the relative coordinates of all pairs.

\[\mathcal{C} = \exp[-i \mathcal{G}] = \exp[-i \sum_{i<j} g_{ij}] \]

\[\mathcal{G}^\dagger = \mathcal{G} \]
\[\mathcal{C}^\dagger \mathcal{C} = 1 \]

Correlated States
\[|\hat{\Psi}\rangle = \mathcal{C} |\Psi\rangle \]

Correlated Operators
\[\hat{O} = \mathcal{C}^{-1} \hat{O} \mathcal{C} \]

\[\langle \hat{\Psi} | \hat{O} | \hat{\Psi}' \rangle = \langle \Psi | \mathcal{C}^{-1} \hat{O} \mathcal{C} | \Psi' \rangle = \langle \Psi | \hat{O} | \Psi' \rangle \]
Two-Body Correlations

- two-body generator

\[\zeta = e^{-i\tilde{G}}, \quad G = \sum_{i<j} g_{ij} \]

Cluster Expansion

correlated operators \(\hat{A} = C^\dagger A C \) are no longer operators with definite particle number

- decompose correlated operator into irreducible \(k \)-body operators

\[\hat{A} = \hat{A}^{[1]} + \hat{A}^{[2]} + \hat{A}^{[3]} + \ldots \]

Two-Body Approximation

\[\tilde{T}^{C2} = \tilde{T}^{[1]} + \tilde{T}^{[2]}, \quad \tilde{V}^{C2} = \tilde{V}^{[2]} \]

- correlation range should be smaller than mean distance of nucleons

Correlator \(\zeta \)

should conserve translational, rotational and Galilei invariance

cluster decomposition principle should be fulfilled

Spin-Isospin Dependence

nuclear interaction strongly depends on spin and isospin

\[\nu = \sum_{s,t} \nu_{ST} \Pi_{ST} \]

- different correlations in the respective channels

\[g = \sum_{s,t} g_{ST} \Pi_{ST} \]

- correlated interaction in two-body space

\[\hat{\nu} = \sum_{s,t} (e^{ig_{ST}} \nu_{ST} e^{-ig_{ST}}) \Pi_{ST} \]
Central Correlations

- strong repulsive core in central part of realistic interactions
- suppression of the probability density for finding two nucleons within the core region
 - central correlations
- cannot be described by single or superposition of few Slater determinants

\[V_{01}(r) \text{ [MeV]} \]

\[\rho^{(2)}_{SD}(r) \text{ [fm}^{-3}] \]

\[C \sim r \]

“shift the nucleons out of the core region”
Radial shift

- correlator shifts nucleons out of core
- radial shift generated by radial momentum p_r

$$\zeta_r = \exp \left[-i G_r \right] = \exp \left[-i \sum_{i<j} g_{r,ij} \right]$$

$$g_r = \frac{1}{2} \left\{ s(r)p_r + p_rs(r) \right\}, \quad p_r \Rightarrow \frac{1}{i} \left(\frac{1}{r} + \frac{\partial}{\partial r} \right)$$

Correlated 2-body wave function

$$\langle \vec{X}, \vec{r} | e^{-ig_r} | \Phi \rangle = \frac{R_-(r)}{r} \sqrt{R'_-(r)} \langle \vec{X}, R_-(r)\hat{r} | \Phi \rangle$$

e^{-ig_r} acts only on relative distance r, not on orientation \hat{r}, not on c.m. \vec{X}, nor on spins

Correlation function

use correlation function $R_{\pm}(r)$ instead of shift function $s(r)$

$$\int_r^{R_+(r)} \frac{d\xi}{s(\xi)} = \pm 1, \quad R_{\pm}(r) \approx r \pm s(r)$$

Correlated operators

$$e^{+ig_r} V(r) e^{-ig_r} = V(R_+(r))$$

$$e^{+ig_r} (\vec{r} \times \vec{p}) e^{-ig_r} = (\vec{r} \times \vec{p})$$
Centrally Correlated Hamiltonian

\[\hat{t}^{[1]} = t \]

\[\hat{t}^{[2]} = c_r^\dagger(t_1 + t_2)c_r - (t_1 + t_2) \]

\[\Rightarrow \frac{1}{2} \left[p_r^2 \frac{1}{2\mu_r(r)} + \frac{1}{2\hat{\mu}_r(r)p_r^2} \right] + \frac{1}{2\hat{\mu}_\Omega(r)} \frac{l^2}{r^2} \]

\[+ \frac{1}{2\mu} \left(\frac{7R''_+(r)^2}{4R'_+(r)^4} - \frac{R'''_+(r)}{2R'_+(r)^3} \right) \]

Potential

\[\hat{v}^c \Rightarrow v^c(R_+(r)) \]

\[\hat{v}^b \Rightarrow v^b(R_+(r)) \hat{l} \cdot \hat{s} \]

\[\hat{v}^f \Rightarrow v^f(R_+(r)) s_{12}(\hat{r}, \hat{r}) \]
Tensor Correlations

- analogy with dipole-dipole interaction
 \[V_{\text{tensor}} \sim -\left[3 (\vec{\sigma}_1 \hat{r})(\vec{\sigma}_2 \hat{r}) - \vec{\sigma}_1 \vec{\sigma}_2 \right] \]

- couples the relative spatial orientation \(\hat{r} \) of two nucleons with their spin orientations
 ➤ tensor correlations

- cannot be described by single or superposition of few Slater determinants

\[\sim \Omega \]

"rotate nucleons towards poles or equator depending on spin orientation"
Angular shift

- Correlator shifts nucleons to attractive regions

Angular shift generated by $\vec{p}_\Omega = \vec{p} - p_r \hat{r}$

$$Z_\Omega = \exp \left[-i G_\Omega \right] = \exp \left[-i \sum_{i<j} g_{\Omega,ij} \right]$$

$$g_{\Omega} = \theta(r) \frac{3}{2} \left(\vec{\sigma}_1 \cdot \vec{\sigma}_2 \right) \left(\vec{r}_1 \cdot \vec{r}_2 \right) + \left(\vec{\sigma}_1 \cdot \vec{r}_2 \right) \left(\vec{\sigma}_2 \cdot \vec{p}_\Omega \right)$$

Correlated 2-body wave function (LS - coupled)

$$\langle r | \zeta_\Omega | \varphi; (J, 1)J \rangle = \varphi(r) | (J, 1)J \rangle$$

$$\langle r | \zeta_\Omega | \varphi; (J - 1, 1)J \rangle = \cos \left(\theta^{(J)}(r) \right) \varphi(r) | (J - 1, 1)J \rangle + \sin \left(\theta^{(J)}(r) \right) \varphi(r) | (J + 1, 1)J \rangle$$

Correlation function

$$\theta^{(J)}(r) = 3 \sqrt{J(J+1)} \theta(r)$$

tensor correlator admixes $L = 2$ to $L = 0$, etc.

Correlated operators

Central interactions

$$\text{invariant}$$

$$e^{+ig_\Omega} V(r) e^{-ig_\Omega} = V(r)$$

Correlated tensor:

$$e^{+ig_\Omega} s_{12}(\hat{r}, \hat{\mathbf{p}}) e^{-ig_\Omega} =$$

$$e^{-3\theta(r)} s_{12}(\hat{\mathbf{r}}, \hat{\mathbf{r}})$$

tensor

$$+ 2 \left(1 - e^{-3\theta(r)} \right) (3 + \vec{\sigma}_1 \cdot \vec{\sigma}_2)$$

central

$$+ 6 \left(1 - e^{-3\theta(r)} \right) \vec{l} \cdot \vec{s}$$

spin-orbit

$$+ \ldots$$

small terms

Correlated States: The Deuteron

\[\langle r | \phi \rangle \]

\(L = 0 \)

\(r \) [fm]

0 0.05 0.1 0.15

0 1 2 3 4 5
Correlated States: The Deuteron

\[\langle r | \phi \rangle \]

\[\langle r | C_r | \phi \rangle \]

\[s(r) \]

Central correlations
Correlated States: The Deuteron

\[\langle r \phi \rangle \]

\[\langle r C_{C} \phi \rangle \]

\[\langle r C_{\Delta C} \phi \rangle \]

\[L = 0 \]

\[s(r) \]

\[\vartheta(r) \]

constraint on range of tensor correlator

central correlations

tensor correlations

Central and Tensor Correlators

\[C = \tilde{C}_\Omega \tilde{C}_r \]

Central Correlator \(\tilde{C}_r = \exp\left[-i \sum_{i<j} g_{r,ij} \right] \)
- radial distance-dependent shift in the relative coordinate of a nucleon pair
 \[g_r = \frac{1}{2} s(r) p_r + p_r s(r) \]
 \[p_r = \frac{1}{2} \left(\vec{r} \cdot \vec{p} + \vec{p} \cdot \frac{\vec{r}}{r} \right) \]

Tensor Correlator \(\tilde{C}_\Omega = \exp\left[-i \sum_{i<j} g_{\Omega,ij} \right] \)
- angular shift depending on the orientation of spin and relative coordinate of a nucleon pair
 \[g_\Omega = \frac{3}{2} \theta(r) \left(\vec{\sigma}_1 \cdot \vec{p}_\Omega \right) \left(\vec{\sigma}_2 \cdot \vec{r} \right) + (\vec{r} \leftrightarrow \vec{p}_\Omega) \]
 \[\vec{p}_\Omega = \vec{p} - \frac{\vec{r}}{r} p_r \]

\(s(r) \) and \(\theta(r) \)
for given potential determined in the two-body system
Central Correlations

- determine $s(r)$ and $\vartheta(r)$ in each spin-isospin channel by minimizing the energy in the two-body system

$$\min_{s(r), \vartheta(r)} \langle \phi_{\text{trial}}^{ST} | C_r^+ C_{\Omega}^+ H C_{\Omega} C_r | \phi_{\text{trial}}^{ST} \rangle$$

- correlation functions depend only weakly on the trial wave function
- range of $s(r), \vartheta(r)$ greater mean distance of nucleons \Rightarrow large 3-body terms $\hat{T}^{[3]} + \hat{V}^{[3]}$
- restrict the range of the tensor correlations in the $S = 1, T = 0$ channel (parameter $I_\vartheta = \int dr \ r^2 \vartheta(r)$)

Tensor Correlations

Momentum-Space Matrix Elements

\[\langle q (LS)_{JT} | V_{\text{bare}} | q' (L'S)_{JT} \rangle \]

\[\sim V_{\text{bare}} \]

\[\sim V_{\text{UCOM}} \]

pre-diagonalisation of Hamiltonian

AV18
Interaction in Momentum Space

\[\langle klm | \hat{H}^{[2]} | k'lm' \rangle = i^{\ell'-\ell} M \int d^3 x \int d^3 x' Y_{lm}^*(\hat{x}) j_{\ell}(kx) \langle \hat{x} | \hat{H}^{[2]} | \hat{x}' \rangle j_{\ell'}(k'x') Y_{l'm'}(\hat{x}') \]

1S_0 channel

- Uncorrelated
- Correlated

3S_1 channel

Unique effective potential – identical to \(V_{\text{lowk}} \)

Achim Schwenk, et al nucl-th/0108041

\(V_{\text{lowk}} \) Cutoff \(\Lambda = 1.0 - 2.0 \text{ fm}^{-1} \)
Comparison with $V_{\text{low-k}}$

[Graph showing interactions]
• expectation value of Hamiltonian (with AV18) for Slater determinant of harmonic oscillator states

\[E / A \text{[MeV]} \]

\begin{align*}
4^\text{He} & \quad 1^6\text{O} & \quad 4^8\text{Ca} & \quad 9^0\text{Zr} & \quad 13^2\text{Sn} & \quad 20^8\text{Pb}
\end{align*}

central & tensor correlations essential to obtain bound nuclei
correlations induce high-momentum components
contributions of tensor correlations very big
different correlator ranges relevant especially at the fermi surface
Application I

No-Core Shell Model
many-body state is expanded in Slater determinants of harmonic oscillator single-particle states

large scale diagonalisation of Hamiltonian within a truncated model space ($N\hbar\omega$ truncation)

estimate of short- and long-range correlations

NCSM code by Petr Navrátil [PRC 61, 044001 (2000)]
$^4\text{He: Convergence}$

V_{AV18}

V_{UCOM}

Residual state-dependent long-range correlations
$^4\text{He}: \text{Convergence}$

V_{AV18}

V_{UCOM}

Omitted three- and four-body contributions
- **Tjon-line**: $E(^4\text{He})$ vs. $E(^3\text{H})$ for phase-shift equivalent NN-interactions.
• **Tjon-line**: $E^{(4)}\text{He}$ vs. $E^{(3)}\text{H}$ for phase-shift equivalent NN-interactions

• change of \mathcal{C}_Ω-correlator range results in shift along Tjon-line

minimise net three-body force by choosing correlator with energies close to experimental value
- **Tjon-line**: $E(^4\text{He})$ vs. $E(^3\text{H})$ for phase-shift equivalent NN-interactions

- change of C_Ω-correlator range results in shift along Tjon-line

- minimise net three-body force by choosing correlator with energies close to experimental value
^6Li: NCSM for p-Shell Nuclei

systematic NCSM study throughout p-shell in progress

$\hbar \omega = 26$ MeV

V_{UCOM} and $V_{\text{UCOM}} + \text{Lee-Suzuki}$ calculations by Petr Navratil

E_0 [MeV] vs. N_{max}

E^* [MeV]

Exp Chiral

$8\hbar \omega$, $10\hbar \omega$, $12\hbar \omega$, $12\hbar \omega$
large-scale NCSM calculations throughout the p-shell in progress (with Lee-Suzuki transformation)
large-scale NCSM calculations throughout the p-shell in progress (with Lee-Suzuki transformation)

ν_{UCOM} gives correct level ordering without any NNN interaction

calculations by Petr Navrátil – preliminary
Application II:

Hartree-Fock & Beyond
Standard Hartree-Fock

+ Matrix Elements of Correlated
Realistic NN-Interaction \(V_{\text{UCOM}} \)

- many-body state is a **Slater determinant** of single-particle states expanded in oscillator basis

- **correlations cannot be described** by Hartree-Fock states

- starting point for **improved many-body calculations**: MBPT, RPA, SM/CI, CC,...
Hartree-Fock with V_{UCOM}

-8
-6
-4
-2
0
-2
-4
-6
-8
40 He
16 O
24 O
34 Si
40 Ca
48 Ca
48 Ni
56 Ni
68 Ni
78 Ni
88 Sr
90 Zr
100 Sn
114 Sn
132 Sn
146 Gd
208 Pb

E/A [MeV]

R_{ch} [fm]

long-range correlations are missing

Perturbation Theory with V_{UCOM}

long-range correlations are perturbative
easily tractable within PT, SM/CI, CC, RPA,...

indications for presence of residual three-body force

Summary

- **Unitary Correlation Operator Method**
 treats short range repulsive and tensor correlations
 \[C = C_r C_\Omega \]

- **UCOM** defines phase-equivalent correlated interaction \(V_{UCOM} \)
 for many-body methods with low-k Hilbert spaces: HF, shell model, FMD
 \(V_{UCOM} \) virtually independent on realistic starting \(V_{NN} \)

- Range of tensor correlator \(C_\Omega \) adjusted to minimize irreducible 3-body forces

- No-core shell model calculations for light nuclei
 \(V_{UCOM} \) produces effects attributed to 3N forces belonging to chiral NN or AV18

- Hartree Fock + 2nd order perturbation for nuclei up to \(^{208}\text{Pb}\)
 indication for necessity of 3N forces for \(V_{UCOM} \)

Outlook

- Improve \(s(r), \vartheta(r) \)
- 3N force for \(V_{UCOM} \)?
- Test many-body states with correlated observables \(C^\dagger A C \)
 el. magn. transitions & moments, \(\beta \)-decay etc.
Anwendung 2

Fermionic Molecular Dynamics
Fermionic

Slater determinant

\[|Q\rangle = \mathcal{A}\left(|q_1\rangle \otimes \cdots \otimes |q_A\rangle\right) \]

\(\Rightarrow\) antisymmetrized A-body state

Molecular

single-particle states

\[\langle \vec{x}|q\rangle = \sum_i c_i \exp\left\{-\frac{(\vec{x} - \vec{b}_i)^2}{2a_i}\right\} \otimes |\chi_i\rangle \otimes |\xi\rangle \]

\(\Rightarrow\) Gaussian wave-packets in phase-space, spin is free, isospin is fixed

Dynamics in Hilbert space

spanned by one or several non-orthogonal \(|Q^{(a)}\rangle\)

\[|\Psi\rangle = \sum_a \psi_a |Q^{(a)}\rangle \]

variational principle \(\rightarrow\) \(Q^{(a)} = \{ q^{(a)}_v, v = 1 \cdots A \}, \psi_a \)

\(\Rightarrow\) Hilbert space contains shell-model, clusters, halos
Effective Correction to the Interaction

Effective two-body interaction

- correlated two-body interaction $\hat{H} = \hat{C}^\dagger \hat{H} \hat{C}$ is lacking three-body forces

- instead of three-body force use additional **momentum-dependent** and **spin-orbit** two-body correction term

- fit correction term to binding energies and radii of “closed-shell” nuclei

- altogether a **15%** correction to the *ab-initio* two-body potential

^{16}O and ^{40}Ca are not “closed shell” nuclei!
Radius and Quadrupole Moment as Generator Coordinates

<table>
<thead>
<tr>
<th></th>
<th>(r_{\text{charge}}) [fm]</th>
<th>(Q) [fm(^2)]</th>
<th>(B(E2)) [e(^2)fm(^4)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAV</td>
<td>2.39</td>
<td>-6.25</td>
<td>9.31</td>
</tr>
<tr>
<td>VAP</td>
<td>2.49</td>
<td>-8.02</td>
<td>15.36</td>
</tr>
<tr>
<td>Multiconfig</td>
<td>2.74</td>
<td>-11.88</td>
<td>30.39</td>
</tr>
</tbody>
</table>

Energies

<table>
<thead>
<tr>
<th></th>
<th>(^8\text{Be}) [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation</td>
<td>4(^+) -40.6</td>
</tr>
<tr>
<td>PAV</td>
<td>4(^+) -41.0</td>
</tr>
<tr>
<td>VAP</td>
<td>4(^+) -47.7</td>
</tr>
<tr>
<td>Multiconf</td>
<td>4(^+) -54.8</td>
</tr>
<tr>
<td>Exp</td>
<td>4(^+) -53.5</td>
</tr>
</tbody>
</table>

FMD - Variation, PAV$^\pi$, Multiconfig.

<table>
<thead>
<tr>
<th></th>
<th>E [MeV]</th>
<th>r_{charge} [fm]</th>
<th>$B(E2)$ [$e^2\text{fm}^4$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>V/PAV</td>
<td>-81.4</td>
<td>2.36</td>
<td>-</td>
</tr>
<tr>
<td>PAV$^\pi$</td>
<td>-88.5</td>
<td>2.51</td>
<td>36.3</td>
</tr>
<tr>
<td>Multiconfig(4)</td>
<td>-92.2</td>
<td>2.52</td>
<td>42.8</td>
</tr>
<tr>
<td>Multiconfig(14)</td>
<td>-92.4</td>
<td>2.52</td>
<td>42.9</td>
</tr>
<tr>
<td>Exp</td>
<td>-92.2</td>
<td>2.47</td>
<td>39.7 ± 3.3</td>
</tr>
</tbody>
</table>

^{12}C

Structure of the Carbon – Hoyle State

\[
\begin{align*}
\langle \psi_0^+ \rangle &= 0.76 \\
\langle \psi_{0_2}^+ \rangle &= 0.71 \\
\langle \psi_{0_2}^+ \rangle &= 0.50
\end{align*}
\]
Helium Isotopes

\[\text{soft-dipole mode} \]

neutrons are oscillating against \(\alpha \)-core
Helium Isotopes

![Graph showing binding energies and matter radii for He4, He5, He6, He7, and He8 isotopes. The graph includes data from Ozawa, Suzuki, Tanihata, NPA 693 (2001) 32; Raman, Nestor, Tikkanen, Atomic Data and Nucl. Data Tables 78 (2001) 1.](image-url)
Helium Isotopes

Beryllium Isotopes

Cluster structure changes with addition of neutrons
Beryllium Isotopes

Binding energies

- Binding energies for Be isotopes are shown with different nuclear states, such as 0^+, $1/2^+$, and $3/2^-$.
- The plot includes data points for Be7 to Be14 isotopes.

Matter radii

- Matter radii are depicted for the same isotopes, showing the experimental (Exp) and theoretical (PAV, Multiconf) values.
- The radii are given in femtometers (fm).

Exp: Ozawa, Suzuki, Tanihata, NPA 693 (2001) 32; Raman, Nestor, Tikkanen, Atomic Data and Nucl. Data Tables 78 (2001) 1

Mikroskopische Kern-Kern-Potentiale

- Vielteilchenzustände: Fermionische Molekulardynamik (FMD)
- Effektive $^\text{NN}$-Wechselwirkung: abgeleitet von der realistischen Argonne-V18 $^\text{NN}$-Wechselwirkung (UCOM)

![Diagram showing mass densities for different isotopes of oxygen](image)

$^{}_{16}\text{O}$ - $^{}_{16}\text{O}$

$^{}_{22}\text{O}$ - $^{}_{22}\text{O}$

$^{}_{24}\text{O}$ - $^{}_{24}\text{O}$
Astrophysikalischer S-Faktor

\[S(E) = \sigma_{\text{fusion}}(E) \, E \, e^{2\pi \eta} \]

\(\eta = \) Sommerfeld-Parameter
Outlook: Resonances & Scattering in FMD

- collective coordinate representation as tool for the description of continuum states in FMD

First steps towards fully microscopic and consistent description of structure and reactions

7Be Phase Shift 7/2− Resonance

\[J^\pi = 7/2^- \]

Multiconfiguration \(^3\text{He}\)

- Experimental data
- 30 frozen + \(^7\text{Be} \) PAV\(^\pi \)
- 30 frozen configurations

\[\delta(E) \text{ [deg]} \]

\[E \text{ [MeV]} \]

\[\gamma \text{ resonance} \]

wave function large in interior

PAV\(^\pi \) state essential

^7Be Phase Shift $5/2^-$ Resonance

Zusammenfassung und Ausblick

Neue Ära der Kernstruktur

- **Unitary Correlation Operator Method** beschreibt kurzreichweitige radiale und tensorielle Korrelationen

- **UCOM** erzeugt ab-initio korrelierte Wechselwirkung \hat{H}
 für Vielteilchenmethoden wie HF, Shalenmodell, FMD

- Observablen müssen und können auch korreliert werden

- no-core Schalenmodell Rechnungen für leichte Kerne

- **FMD** Rechnungen mit demselben $\hat{H}^{C2} + \hat{H}^{corr}$ für $3 \leq A \leq 60$

- Ein mikroskopisches Modell für:
 Bindungsenergien, Radien, Spektren, Übergänge,
 Kontinuum, Resonanzen, Reaktionen

Ausblick

- ”ab initio” Idee weiter verfolgen → Vorhersagekraft

- Vorhersagen für viele exotische leichte Kerne (vor Messung)

- Korrelierte Übergänge: M1, β-Zerfall, quenching

- Ab-initio korrelierte WW in HF, RPA oder ähnlichem für $A > 60$

- Langreichweitige Tensorkorr. – 3-Teilchenkräfte

- ...
Epilogue

- **thanks to my group & my collaborators**

- A. Cribeiro, K. Langanke
 Gesellschaft für Schwerionenforschung (GSI)

- T. Neff
 NSCL, Michigan State University

- R. Roth, H. Hergert, N. Paar, P. Papakonstantinou, A. Zapp
 Institut für Kernphysik, TU Darmstadt

supported by the DFG through SFB 634
“Nuclear Structure, Nuclear Astrophysics and Fundamental Experiments...”
How to improve?

Projection After Variation (PAV)

- mean-field may break symmetries of Hamiltonian
- restore reflection and rotational symmetry by parity and angular-momentum projection $P_{MK}^{J\pi}$

\[
\sum_{K'} \langle Q | HP_{KK'}^{J\pi} | Q \rangle c_{K'} = E_{K}^{J\pi} \sum_{K'} \langle Q | P_{KK'}^{J\pi} | Q \rangle c_{K'}
\]

Variation After Projection (VAP)

- effect of projection can be large
- perform VAP applying constraints on radius, dipole moment, quadrupole moment or octupole moment and minimize the energy in the projected energy surface

Multiconfiguration Calculations

- diagonalize Hamiltonian in a set of projected intrinsic states

\[
\left\{ P_{KK'}^{J\pi} | Q^{(a)} \rangle, \quad a = 1, \cdots, N \right\}
\]
Two-Body Correlations

- two-body generator

\[\tilde{C} = e^{-i\tilde{G}}, \quad G = \sum_{i<j} g_{ij} \]

Cluster Expansion

correlated operators \(\hat{A} = \tilde{C}^\dagger \tilde{A} \tilde{C} \) are no longer operators with definite particle number

- decompose correlated operator into irreducible \(k \)-body operators

\[\hat{A} = \hat{A}^{[1]} + \hat{A}^{[2]} + \hat{A}^{[3]} + \cdots \]

Two-Body Approximation

\[\hat{T}^{C2} = \hat{T}^{[1]} + \hat{T}^{[2]}, \quad \hat{V}^{C2} = \hat{V}^{[2]} \]

- correlation range should be smaller than mean distance of nucleons (to avoid 3-body terms)

Correlator \(\tilde{C} \) should conserve translational, rotational and Galilei invariance short ranged

Two-Body Correlations

two-body generator

\[C = e^{-iG}, \quad G = \sum_{i<j} g_{ij} \]

Cluster Expansion

correlated operators \(\hat{A} = C^\dagger AC \) are no longer operators with definite particle number

decompose correlated operator into irreducible \(k \)-body operators

\[\hat{A} = \hat{A}^{[1]} + \hat{A}^{[2]} + \hat{A}^{[3]} + \cdots \]

Two-Body Approximation

\[\hat{T}^{C2} = \hat{T}^{[1]} + \hat{T}^{[2]}, \quad \hat{V}^{C2} = \hat{V}^{[2]} \]

Correlator \(\mathcal{C} \)

should conserve translational, rotational and Galilei invariance short ranged

Spin-Isospin Dependence

nuclear interaction strongly depends on spin and isospin

\[v = \sum_{S,T} v_{ST} \Pi_{ST} \]

different correlations in the respective channels

\[g = \sum_{S,T} g_{ST} \Pi_{ST} \]

correlated interaction in two-body space

\[\hat{V} = \sum_{S,T} (e^{ig_{ST}} v_{ST} e^{-ig_{ST}}) \Pi_{ST} \]
Radial and Tensor Correlations

\[C = C_\Omega C_r \]
\[= e^{-iG_\Omega} e^{-iG_r} \]

\[\vec{p} = \vec{p}_r + \vec{p}_\Omega \]
\[\vec{p}_r = \frac{1}{2} \left[\frac{\vec{r}}{r} \left(\vec{r} \vec{p} \right) + \left(\vec{p} \frac{\vec{r}}{r} \right) \frac{\vec{r}}{r} \right], \quad \vec{p}_\Omega = \frac{1}{2r} \left[\vec{l} \times \frac{\vec{r}}{r} - \frac{\vec{r}}{r} \times \vec{l} \right] \]

Radial Correlator

\[G_r = \frac{1}{2} \{ p_r s(r) + s(r) p_r \} \]

● probability density shifted out of the repulsive core

\[S = 0, \quad T = 1 \]

Manfred Ristig, Z. Physik 199 (1967) 325

Radial Correlator

\[G_r = \frac{1}{2} \{ p_r s(r) + s(r) p_r \} \]

- probability density shifted out of the repulsive core

\[S = 0, \ T = 1 \]

Tensor Correlations

\[G_\Omega = \vartheta(r) \frac{3}{2} \left[(\vec{\sigma}_1 \cdot \vec{p}_\Omega) (\vec{\sigma}_2 \cdot \vec{r}) + (\vec{\sigma}_1 \cdot \vec{r}) (\vec{\sigma}_2 \cdot \vec{p}_\Omega) \right] \]

- tensor force admixes other angular momenta

\[S = 1, \ T = 0 \]
Radial and Tensor Correlations

\[C = C_\Omega C_r = e^{-iG_\Omega} e^{-iG_r} \]

\[\tilde{p} = \tilde{p}_r + \tilde{p}_\Omega \]

\[\tilde{p}_r = \frac{1}{2} \left\{ \frac{\tilde{r}}{r} \left(\frac{\tilde{r}}{r} \tilde{p} \right) + \left(\frac{\tilde{p}}{r} \right) \frac{\tilde{r}}{r} \right\}, \quad \tilde{p}_\Omega = \frac{1}{2r} \left[\hat{l} \times \frac{\tilde{r}}{r} - \frac{\tilde{r}}{r} \times \hat{l} \right] \]

Radial Correlator

\[G_r = \frac{1}{2} \left\{ p_r s(r) + s(r) p_r \right\} \]

- probability density shifted out of the repulsive core

\[S = 0, \quad T = 1 \]

Tensor Correlations

\[\hat{\rho}(\Omega)(\sigma_2 \cdot \tilde{r}) + (\sigma_1 \cdot \tilde{r})(\sigma_2 \cdot \tilde{p}_\Omega) \]

- tensor force admixes other angular momenta

Manfred Ristig Z.Physik 199 (1967) 325
Quasi-exact calculations for light nuclei possible

exact result from PRC64 (2001) 044001

- use no-core shell model code from Petr Navratil (LLNL)
- neglected 3-body correlated terms same order as genuine 3N interactions
- more investigations needed

test of two-body approximation

E [MeV] vs. $\hbar \Omega$ [MeV] for 4He

MTV Interaction
No-Core Shell Model Calculations

{\[^3\text{He} \]}

- correlated
- bare

exact results from PRC52 (1995) 2885

{\[^4\text{He} \]}

- correlated
- bare

- use no-core shell model code from Pétr Navratil (LLNL)

correlations induce high-momentum components
contributions of tensor correlations very big
different correlator ranges relevant especially at the fermi surface
\[\langle klm | \hat{H}^{[2]} | k' l' m' \rangle = i^{l''-l} M \int d^3 x \int d^3 x' Y_{lm}^*(\hat{x}) j_l(kx) \langle \hat{x} | \hat{H}^{[2]} | \hat{x}' \rangle j_{l'}(k'x') Y_{l'm'}(\hat{x}') \]

1\text{S}_0 \text{ channel}

3\text{S}_1 \text{ channel}

\[\langle k \mid \hat{H}^{[2]} \mid k \rangle, \langle k \mid V \mid k \rangle [\text{fm}] \]

\[\langle k \mid \hat{H}^{[2]} \mid k \rangle, \langle k \mid V \mid k \rangle [\text{fm}] \]

\[k [\text{fm}^{-1}] \]

\[k [\text{fm}^{-1}] \]

unique effective potential – identical to \(V_{\text{lowk}} \)

Achim Schwenk, et. al nucl-th/0108041

\[V_{\text{lowk}} \text{ Cutoff } \Lambda = 1.0 - 2.0 \text{ fm}^{-1} \]
AV18 Interaction in Momentum Space

Off-diagonal Matrix Elements

"pre-diagonalization"

bare potential

correlated interaction
Increasing range of tensor correlator

3He

4He

$^{11}\text{B} \ (^{3}\text{He}, t) \ ^{11}\text{C} – \text{Gamov-Teller transitions}$

transition: $C^{-1}_\Omega \sigma \tau_+ C_\Omega$
up to now only: $\sigma \tau_+$

NCSM: Navrátil, Ormand
no core shell model with 3-body force, PRC 68(2003)
third $3/2^-$ missing

FMD with configuration mixing

Exp.: Y. Fujita, P. von Brentano et al.
Variation

\begin{tabular}{ccc}
\hline
E_b [MeV] & r_{charge} [fm] & r_{matter} [fm] \\
\hline
PAV 1g & 99.1 & 2.52 & 2.88 \\
PAV & 105.0 & 2.49 & 2.60 \\
Exp & 110.8 & 2.70 ± 0.03 & 2.76 ± 0.06 \\
\hline
\end{tabular}

\begin{tabular}{ccc}
\hline
E_{2+} [MeV] & $B(E2)$ [e^2fm^4] \\
\hline
PAV & 1.29 & 4.6 \\
Exp & 1.77 & 3.15 ± 0.95 \\
Global Best Fit1 & 1.77 & 82 ± 14 \\
\hline
\end{tabular}

1 Raman et al, Atomic Data and Nuclear Data Tables 78 (2001) 1

calculated B(E2) consistent with anomalously long lifetime of 2^+ state measured at RIKEN
Imai et al, PRL in print

Nuclear Chart

FMD, Variation

1 Gaussian per single-particle state

correlated $AV18 + \tilde{H}^{corr}$
FMD, Variation
Nuclear Chart

Three-Nucleon Interactions from Few- to Many-Body Systems
March 12-16, 2007 at TRIUMF

1 Gaussian per single-particle state

2 Gaussians per single-particle state

(E - E_{exp}) / A [MeV]

correlated AV18 + \tilde{\hat{H}}_{corr}
Nuclear Degrees of Freedom

quarks

heavy nuclei

few nucleons

nucleon QCD

few-body systems free NN force

many-body systems effective NN force

Nuclear Degrees of Freedom

Three-Nucleon Interactions from Few- to Many-Body Systems

March 12-16, 2007 at TRIUMF

cm-coordinates and spins

⃗r_i
⃗σ_i
⃗r_j
⃗σ_j

few nucleons

quarks

 gluons

nucleon
QCD

few-body systems
free NN force

many-body systems
effective NN force