

Which part of the QCD Phase Diagram we are probing?

Goals of Beam Energy Scan Program

 Consolidate the signals of quark-hadron transition observed at top RHIC energies
Look for signatures of possible 1st order phase transition

Look for signatures of possible critical point

RHIC Beam Energy Scan-Phase I

SN0598

√s (GeV)	Statistics(Millions) (0-80%)	Year	μ _B (MeV)	T (MeV)	μ _Β /Τ
7.7	~4	2010	420	140	3.020
11.5	~12	2010	315	152	2.084
14.5	~ 20	2014	266	156	1.705
19.6	~36	2011	205	160	1.287
27	~70	2011	155	163	0.961
39	~130	2010	115	164	0.684
62.4	~67	2010	70	165	0.439
200	~350	2010	20	166	0.142

 $\mu_{B_{\,\prime}}$ T : J. Cleymans et al., Phys. Rev. C 73, 034905 (2006).

3

14.5 results shown at QM2015, follows common trends with respect to yields and ratios of produced particles

STAR Detector System

CP Search

Collision Centrality

Softening of EOS

Breaking of NCQ scaling

5

Invariant Yields - Hadrons

Collision System: Au+Au

Beam Energy: 7.7, 11.5, 19.6, 27, 39, 62.4, 200 GeV

Collision Centrality: 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%

Yields and Ratios (Representative)

Chemical Freeze-out

Chemical Freeze-Out : Inelastic collision ceases Particle yields get fixed

***THERMUS** : Statistical thermal model

Ensemble used – Grand Canonical and Strangeness Canonical

For Grand Canonical: Quantum numbers (B, S, Q) conserved on average

$$n_{i} = \frac{Tm_{i}^{2}g_{i}}{2\pi^{2}} \sum_{k=1}^{\infty} \frac{(\pm 1)^{k+1}}{k} \left(e^{\frac{k\mu_{i}}{T}}\right) K_{2}\left(\frac{km_{i}}{T}\right)$$

To consider incomplete strangeness equilibration:

$$n_i \rightarrow n_i \gamma_S^{|S_i|}$$

For Strangeness Canonical: Strangeness quantum number (S) conserved exactly

Extracted thermodynamic quantities: T_{ch} , μ_B , μ_s and γ_s (strangeness saturation factor)

Chemical Freeze-out

Chemical Freeze-out (GCE)

Chemical Freeze-out (SCE)

 $\langle N_{part} \rangle$

 $\langle N_{part} \rangle$

Chemical Freeze-out (GCE Vs. SCE)

Chemical Freeze-out : Constrain on μ_{0}

Different conditions on parameters 1. $\mu_0 = 0$ 2. $\mu_{0} = B/2Q$ **3.** $\mu_{Q} = B/2Q$ $\mu_{s} = 0$

Not much difference observed

Chemical Freeze-out: Particle Species

Role of strange hadrons important

Kinetic Freeze-out (Blast-Wave Model fits)

Kinetic Freeze-out Parameters

 \succ The separation between T_{ch} and T_{kin} increases with increasing energy.

The expansion velocity is observed to be constant around 7.7 and 19.6 GeV.

Kinetic Freeze-out Parameters Correlation

Anti-Correlation observed. Central collisions: larger collectivity and smaller de-coupling temperature. Peripehral collisions: smaller collectivity and larger de-coupling temperature.

Freeze-out Results Summary

Chemical Freeze-out: (GCE)

- Central collisions
- BES-I:

$20 < \mu_B < 420 \text{ MeV}$

Kinetic Freeze-out:

Central collisions: lower value of *T_{kin}* and larger collectivity *β*Stronger collectivity at higher energy

 \overline{BES} priorian and for exploring the interesting part of (μ_B : 20 – 420 MeV) the QCD phase diagram.

Some issues we can try to address

1. Can one claim existence of CP region in QCD Phase Diagram ?

1(a) If Yes: What representation of results is required ?

1(b) If No: What additional checks and measurements needed from experiment ? What theoretical results needs to be obtained or compared with ?

2. Should we study C₆ at higher energies ?

3. Can experiment and theory colleagues together jointly get the physics conclusion out for this result ?

Experimentally look at next set of Observables (till BES-II)

Mixed Cumulants

$$\chi_{xy}^{n} = \frac{d^{n+m} [P(T,\mu)/T^{4}]}{d(\mu_{x}/T)^{n} d(\mu_{y}/T)^{m}}$$

Correlations between Baryon number and Strangeness number

Observables for CP:

Phys. Rev. D 82 (2010) 074008

too are parameter-independent. So, the last five ratios in the table have no ξ -dependence, no dependence on the four poorly known parameters, and no n_p -dependence. This means that, after we subtract the Poisson contribution to each of the cumulants involved, we can make a robust prediction for the ratios of the contributions of critical fluctuations. We find that these five ratios are all precisely 1.