Energy Dependence of Higher Moments of Net-Kaon Multiplicity Distributions at STAR

Ji Xu

Lawrence Berkeley National Laboratory Central China Normal University

Outline:

1) Status of the Net-Kaon Analysis at STAR

(Based on QM2015 Poster by Ji Xu)

2) Future Plan

Data Sets at STAR

Particle Rapidity

- 1) Largest data sets versus collision energy: Many thanks to RHIC operation!
- 2) STAR: Large and homogeneous acceptance, excellent particle identification capabilities. Important for fluctuation analysis!

 $^{*}(\mu_{\text{B}},\text{T}_{\text{CH}})$: J. Cleymans et al., PRC 73, 034905 (2006) Talk by J. Thäder, at QM2015

Kaon PID Efficiencies

Varying PID, DCA, Nfit cuts and efficiencies to study the systematic errors, for all the energies.

> X : Values with varying cuts ,Y: Values with default cut:

$$RMS = \sqrt{\frac{1}{N}\sum_{i=1}^{N} (X_i - Y)^2} \qquad Systematic \quad Error = \sqrt{\sum_{j} RMS_{j}^2}$$

Net-Kaon Cumulant Ratios: of C3/C2

Energy Dependence of the Ratios

- The values of σ²/M increase as the energy increases
- The values of So/Skellam are consistent with unity with large uncertainties
- For the most central collisions (0-5%), the values of κσ² are consistent with unity with large errors
- UrQMD (no QCD CP) shows no energy dependence for the most central collisions

- 1) Higher moment of net-Q, net-Kaon, and net-proton measured at RHIC BES-I
- Net-p shows non-monotonic energy dependence in the most central Au+Au collisions at √s_{NN} < 27 GeV!

PHENIX: talk by P. Garg at QM2015; STAR: talk by J. Thäder and poster by J. Xu at QM2015

- ➢ Energy and centrality dependence of cumulants and ratios for net-Kaons from RHIC BES-I reported. Kaons are identified within [|y| < 0.5, 0.2 < p_T < 1.6 (GeV/c)] for Au+Au collisions at √*s_{NN}* = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 and 200 GeV
- Statistical errors are dominant. Within errors, the values of κσ² and Sσ/Skellam are consistent with unity and no energy dependence
- Detector upgrades in BES-II will improve the efficiency and purity for Kaon identification and kinematic coverage

STAR Detector System

√S _{NN} (GeV)	Events (10 ⁶)	BES II / BES I	Weeks	μ _B (MeV)	T _{CH} (MeV)
200	350	2010		25	166
62.4	67	2010		73	165
39	39	2010		112	164
27	70	2011		156	162
19.6	400 / 36	2019-20 / 2011	3	206	160
14.5	300 / 20	2019-20 / 2014	2.5	264	156
11.5	230 / 12	2019-20 / 2010	5	315	152
9.2	160 / 0.03	2019-20 / 2008	9.5	355	140
7.7	100 / 4	2019-20 / 2010	14	420	140

1) Event statistics driven by QCD CP search and di-electron measurements

Outlook

RHIC e-cooling and iTPC upgrades bring BES-II a **new era** for studying the QCD phase structure at high net-baryon region (200 < μ_B < 420 MeV) with unprecedented precision and coverage. Possible new discovers are:

- 1) The QCD critical point (region) and phase boundary
- 2) Properties with Chiral symmetry

Longer Future: fixed-target experiment at extreme large net-baryon density, $350 < \mu_B < 750 \text{ MeV} (8 < \sqrt{s_{NN}} < 2 \text{ GeV})$

Ji Xu (CCNU/LBNL) / jixu@lbl.gov

