Investigating Proton Number Fluctuations with HADES at SIS18

EMMI Fluctuation Workshop - Nov 2015 R. Holzmann (GSI) & M. Szala (Frankfurt)

- Baryon number flucts. in the few-GeV regime
- The HADES experiment at SIS18
- Experimental artifacts

Net proton nb. fluctuations: $\delta(\Delta N_p)$

Net number of protons: $\Delta N_p = N_p - N_{\bar{p}}$

- $\delta(\Delta N_p)$ used as estimate of net baryon nb. fluctuations
- justified for $\sqrt{s} \ge 10 \ GeV$ Kitazawa & Asakawa, PRC 86, 024904 (2012)
- baryon nb. is conserved quantity \rightarrow fluctuations in y-p_t bin
- likewise for net charge & net strangeness fluctuations
- At SIS18: fixed target expt. ($\sqrt{s} \le 2.7 \text{ GeV}$)
 - what about fragments (d, t, He, etc.)?
 - what about neutrons ?

 \rightarrow Here focus is on proton nb. fluctuations $\delta(N_p)$

The HADES experiment at GSI

HADES

The HADES experiment at GSI

Iarge coverage: y = 0 - 2

- hadron & lepton PID
- <2% mass resolution</p>
- advanced triggering capabilities

RICH

General documentation at: http://www-hades.gsi.de

EMMI Fluctuation Workshop Nov 2015 R. Holzmann, GSI Darmstadt

HADES

Performance: particle ID

Performance: weak decays

HADES vs. RHIC BES

Collision Energy Dependence

Jochen Thäder

Our sandbox: the Poisson distribution

<u>Reminder</u>: for Poisson $P(\lambda)$ we have:

- mean $\mu = \lambda$
- width $\sigma = \sqrt{\lambda}$
- skewness $Sk = \frac{1}{\sqrt{\lambda}}$
- kurtosis $\kappa = 1/\lambda$

More generally: all cumulants $c_n = \lambda$

It follows that $\frac{c_n}{c_2} = 1$, in particular:

$$\Rightarrow \omega = \frac{\sigma^2}{\mu} = 1, \quad \text{Sk} \times \sigma = 1, \quad \kappa \times \sigma^2 = 1$$

Data need efficiency corrections

Efficiency = acc x det. eff x rec. eff

- 1. Correct measured distributions (bayesian unfolding) Garg et al., J. Phys. G: Nucl. Part. Phys. 40 (2013)
- 2. Correct the moments

A. Bzdak & V. Koch, PRC 86 (2012); X. Luo, arXiv:1410.3914

➔ used by STAR

Experimental bias: Efficiency

With efficiency = **0.7**

Poisson (\u03c0=40) x Binomial (p=0.7) distribution

Mean = 28 ± 0.0002 Sigma = 5.2915 ± 0.0001 Skewness = 0.1889 ± 0.0001 Kurtosis = 0.0358 ± 0.0002

Omega	=	0.99998	±	0.00004
Skew * Sig	=	0.9993	±	0.0004
Kurt * Sig2	=	1.002	±	0.005
c5/c2	=	1.08	±	0.07

Using the Bzdak-Koch correction procedure:

```
= 40
                   \pm 0.0002
Mean
Sigma
         = 6.3248 \pm 0.0002
Skewness = 0.1585 \pm 0.0001
Kurtosis = 0.0255 \pm 0.0003
             = 1.00009 \pm 0.00006
Omega
                                      ok, but
                        \pm 0.0008
Skew * Sig
             = 1.0022
                                      errors
Kurt * Sig2 = 1.019
                        \pm 0.014
                                      increase!
c5/c2
             = 1.05
                        \pm 0.25
```

Evt-by-Evt efficiency changes

Evt-by-Evt efficiency changes (II)

Scenario 2: Correlated changes of ε with track density: $\pm 1\%$ variation correct with mean $<\varepsilon>$

Mean = 39.93 ± 0.0002 Sigma = 5.8742 ± 0.0002 Skewness = 0.1223 ± 0.0002 Kurtosis = 0.0082 ± 0.0004 Omega = 0.86424 ± 0.00006 Skew * Sig = 0.7185 ± 0.0008 Kurt * Sig2 = 0.283 ± 0.012

= -0.08

strong effect !!!

 ± 0.21

c5/c2

Realistic simulations: UrQMD + Geant3 + event reconstruction

- UrQMD 1.23 GeV/u Au+Au events
- Geant3 detector simulation
- Full track reconstruction + particle ID
- Proton cumulants + Bzdak-Koch correction in $y = y_0 \pm 0.2$ & $p_t = 0.4 - 1.6$ GeV/c bin
- → compare corrected c_n with UrQMD c_n

Scenario 1: assuming constant efficiencies

UrQMD evts:

Centrality:

30-40%	Mean = 6.639 ± 0.002 Sigma = 2.892 ± 0.002 Skewness = 0.487 ± 0.002 Kurtosis = 0.245 ± 0.006
	Omega = 1.260 ± 0.002 Skew * Sig = 1.407 ± 0.005 Kurt * Sig2 = 2.051 ± 0.048
0 – 5%	Mean = 32.57 ± 0.01 Sigma = 5.622 ± 0.005 Skewness = 0.142 ± 0.002 Kurtosis = -0.014 ± 0.006
	Omega = 0.970 ± 0.002 Skew * Sig = 0.793 ± 0.011 Kurt * Sig2 = -0.45 ± 0.17

Reconstruction corrected with constant mean $<\epsilon>$:

```
Mean
         = 6.702 \pm 0.002
Sigma
         = 2.842 \pm 0.003
Skewness = 0.448 \pm 0.004
Kurtosis = 0.190 \pm 0.013
Omega
            = 1.210 \pm 0.002
Skew * Sig = 1.27 \pm 0.01
Kurt * Sig2 = 1.53 \pm 0.10
                    wrong
         = 32.86 \pm 0.01
Mean
Sigma
            5.163 \pm 0.005
         =
Skewness = -0.105 \pm 0.004
Kurtosis = 0.65 \pm 0.03
            = 0.811 \pm 0.002
Omega
Skew * Sig = -0.54 \pm 0.02
Kurt * Sig2 = 17.27
                     \pm 0.66
              badly wrong
```

Hades proton efficiencies vs. p_t, y & centrality

centrality = 30% - 40%

eff x acc for mult_rec=20-32

centrality = 0% - 5%

eff x acc for mult_rec>82

y_{lab}

Centrality selection in Au+Au

UrQMD 1.23 GeV/u Au+Au evts into HADES:

➔ large evt-to-evt fluctuations of the detector load, even in a given centrality bin

HADES proton efficiency vs. N_{track}/sector

→ Efficiency decreases by 10-15% in most central events
→ Use fitted dependence to correct on evt-by-evt basis ?

Generalized efficiency corrections

Efficiency depends on particle, centrality, pt & y...

➔ need to correct differentially !

Can be done by using the "factorial moments":

Bzdak & Koch, Phys. Rev. C 86 (2012) Xiaofeng Liu, arXiv:1410.3914

$$F_{i,k}(N_p, N_{\bar{p}}) = \left\langle \frac{N_p!}{(N_p - i)!} \frac{N_{\bar{p}}!}{(N_{\bar{p}} - k)!} \right\rangle = \sum_{N_p=i}^{\infty} \sum_{N_{\bar{p}}=k}^{\infty} P(N_p, N_{\bar{p}}) \frac{N_p!}{(N_p - i)!} \frac{N_{\bar{p}}!}{(N_{\bar{p}} - k)!} \qquad F_{i,k}(N_p, N_{\bar{p}}) = \frac{f_{i,k}(n_p, n_{\bar{p}})}{(\varepsilon_p)^i (\varepsilon_{\bar{p}})^k} \\ f_{i,k}(n_p, n_{\bar{p}}) = \left\langle \frac{n_p!}{(n_p - i)!} \frac{n_{\bar{p}}!}{(n_{\bar{p}} - k)!} \right\rangle = \sum_{n_p=i}^{\infty} \sum_{n_{\bar{p}}=k}^{\infty} p(n_p, n_{\bar{p}}) \frac{n_p!}{(n_p - i)!} \frac{n_{\bar{p}}!}{(n_{\bar{p}} - k)!} \qquad F_{i,k}(N_p, N_{\bar{p}}) = \frac{f_{i,k}(n_p, n_{\bar{p}})}{(\varepsilon_p)^i (\varepsilon_{\bar{p}})^k}$$

(3)
$$F_{i,k} = \sum_{x_1,\dots,x_i} \sum_{\bar{x}_1,\dots,\bar{x}_k} A_{i,k} (x_1,\dots,x_i;\bar{x}_1,\dots,\bar{x}_k) \\ f_{i,k} = \sum_{x_1,\dots,x_i} \sum_{\bar{x}_1,\dots,\bar{x}_k} A_{i,k} (x_1,\dots,x_i;\bar{x}_1,\dots,\bar{x}_k)$$

(assuming binomial !) rmstadt 23

Scenario 2: efficiency depends on N_{track}

UrQMD evts:				
Centrality:				
30-40%	Mean = 6.639 ± 0.002 Sigma = 2.892 ± 0.002 Skewness = 0.487 ± 0.002 Kurtosis = 0.245 ± 0.006			
	Omega = 1.260 ± 0.001 Skew * Sig = 1.407 ± 0.005 Kurt * Sig2 = 2.051 ± 0.048			
0 – 5%	Mean = 32.57 ± 0.01 Sigma = 5.622 ± 0.005 Skewness = 0.142 ± 0.002 Kurtosis = -0.014 ± 0.006			
	Omega = 0.970 ± 0.002 Skew * Sig = 0.793 ± 0.011 Kurt * Sig2 = -0.45 ± 0.17			

Reconstruction corrected with mean $<\epsilon>$:

Mean	= 6	.714	± 0.	003	
Sigma	= 2	.935	± 0.	003	
Skewness	= 0	.491	± 0.	003	
Kurtosis	= 0	.252	± 0.	012	
Omega	=	1.	283 ±	0.002	
Skew * Si	g =	1.4	440 ±	0.009	
Kurt * Si	g2 =	2.	17 ±	0.10	
				→ ok !	
Mean	= 3	2.53	± 0.	01	
Sigma	= 5	.743	± 0.	009	
Skewness	= -0	.004	± 0.	007	
Kurtosis	= 0	. 390	± 0.	026	
Omega Skew * Si	= g =	1. -0.	014 ±	0.003	
KURT ^ SI	gz =		.80 ±	0.86	
			ſ		
			→ sti	ill off,	
			bı	ut better !	
					c

Tracking: the Multiwire Drift Chambers (MDC)

- 4 MDC/sector
 - total 33 m² area, 27000 cells
 - Δy<0.1 mm resolution</p>
 - Ar-iC₄H₁₀ [60-40] gas

and low-Z material

Layer	Width/m	Height	Area[m ²]
1	76,7	75,5	0,34
11	90,5	88,3	0,49
111	180,5	178,0	1,88
IV	222,4	219,9	2,83

Electron/positron identification

Scenario 3: eff = eff(N_{track} , N_{wire}/N_{track})

UrQMD evts:

Centrality:

30-40%	Mean = 6.639 ± 0.002 Sigma = 2.892 ± 0.002 Skewness = 0.487 ± 0.002 Kurtosis = 0.245 ± 0.006
	Omega = 1.260 ± 0.001 Skew * Sig = 1.407 ± 0.005 Kurt * Sig2 = 2.051 ± 0.048
0 – 5%	Mean = 32.57 ± 0.01 Sigma = 5.622 ± 0.005 Skewness = 0.142 ± 0.002 Kurtosis = -0.014 ± 0.006
	Omega = 0.970 ± 0.002 Skew * Sig = 0.793 ± 0.011 Kurt * Sig2 = -0.45 ± 0.17

Reconstruction corrected with mean $<\epsilon>$:

Mean =	6.967 ± 0.003
Sigma =	2.966 ± 0.003
Skewness =	0.478 ± 0.004
Kurtosis =	0.244 ± 0.017
Omega	$= 1.263 \pm 0.003$
Skew * Sig	$=$ 1.412 \pm 0.011
Kurt * Sig2	$= (2.15 \pm 0.15)$
	→ ok !
Mean =	33.57 ± 0.01
Sigma =	5.840 ± 0.010
Skewness =	0.056 ± 0.010
Kurtosis =	0.230 ± 0.029
Omega	$= 1.016 \pm 0.003$
Skew * Sig	$= 0.328 \pm 0.060$
Kurt * Sig2	= 7.83 ± 1.00
	L
	even better

Things we are still investigating ...

- Centrality selection: META vs. FW → avoid autocorrelation
- Centrality bin width correction
 remove volume fluctuations
- Track density dependence of efficiency correction
 - → strong detector dependence
 - ➔ check independence assumption
- Analyze Au+Au data
- Role of fragments (d,t,He) \rightarrow do they modify $\delta(\Delta N_p)$?

Back up slides

Which phase-space bite to use?

Towards higher-order cumulants?

Sensitivity to critical fluctuations is expected to increase with order, but same is true for stat. flucs., etc.

→ <10% stat. error needs \approx 10⁹ evts for 6th order, and \approx 10¹³ for 8th order !

(Note: corrections for limited eff & acc will further increase the error)

Technical layout of HADES

1 out of 6 HADES sectors **O** Cryostat HIOH N/ **B** field region He pipe heam Start + target **RICH not shown !**

HADES + FW

inner MDC

RICH readout

A look at HADES data: Au+Au 1.23 GeV/u

2 different centrality cuts, $y = y_o \pm 0.1$, $p_t = 0.4 - 0.8 \ GeV/c$

net proton number (RHIC cuts, 0%-5% central)

net proton number (RHIC cuts, 30%-40% central)

➔ Data look Poisson-like, but not quite ...

Characterizing a distribution by its moments (or alternatively by its cumulants)

A distribution f(x) is fully characterized by its (central) moments:

$$\mu_n = \mathbf{E} \left[(X - \mathbf{E}[X])^n \right] = \int_{-\infty}^{+\infty} (x - \mu)^n f(x) \, dx.$$

n=0, 1, 2, 3, 4, ...,∞

- n=0: normalization = μ_0
- n=1: mean = μ₁
- n=2: variance = μ_2 (or $\sigma = \sqrt{\mu_2}$) measures width
- n=3: skewness = $\frac{\mu_3}{\sigma^3}$ measures asymmetry
- n=4: kurtosis = $\frac{\mu_4}{\sigma^4}$ 3 measures pointedness/flatness
- n>4: ...

A few common examples

	Mean	Variance	Skewness	Kurtosis
Gauss	μ	σ^2	0	0
Binomial	np	np(1-p)	$\frac{1-2p}{\sqrt{np(1-p)}}$	$\frac{1-6p(1-p)}{np(1-p)}$
Poisson	μ	μ	μ ^{-1/2}	µ-1
Skellam	$\mu_1 - \mu_2$	$\mu_1 + \mu_2$	$\frac{\mu_1 - \mu_2}{(\mu_1 + \mu_2)^{3/2}}$	$\frac{1}{\mu_1 + \mu_2}$

For easier comparison with Skellam (and to reduce the so-called volume effect), one often computes:

$$Sk * \sigma = \frac{\mu_1 - \mu_2}{\mu_1 + \mu_2}$$
 and $\kappa * \sigma^2 = 1$

At low beam energies, $\mu_2 = N_{\bar{p}} = 0$ and $Sk * \sigma = \kappa * \sigma^2 = 1$!

Ultimate goal: Compare with STAR data

7 c.m. energies, 3 centrality selections, within a defined $y-p_t$ bin:

