Diffusion of Conserved-Charge Fluctuations

Masakiyo Kitazawa (Osaka U.)

MK, Asakawa, Ono, Phys. Lett. B728, 386-392 (2014) Sakaida, Asakawa, MK, PRC90, 064911 (2014) MK, arXiv:1505.04349, Nucl. Phys. A942, 65 (2015)

Workshop on Fluctuation, GSI, 4/Nov./2015

Objective 1: $\Delta\eta$ Dependence @ ALICE

Objective 2

Theories

on the basis of statistical mechanics

- fluctuation in a spatial volume
- equilibration (in an early time)

What are their relation?

Experiments

- final state fluctuation
- fluctuation in a pseudo rapidity

Time Evolution of Fluctuations

Time Evolution of Fluctuations

revisiting Slot Machine Analogy

An Exercise (Old Ver.). Rconstructing Baryon Number Cumulants

Nucleons have two isospin states.

Coins have two sides.

Slot Machine Analogy

Extreme Examples

Reconstructing Total Coin Number

MK, Asakawa, 2012

 $P_{(0)}(N_{(0)}) = \sum_{n} P_{(0)}(N_{(0)}) B_{1/2}(N_{(0)};N_{(0)})$ binomial distribution

Application to efficiency correction:

MK, Asakawa, 2012 Bzdak, Koch, 2012, 2015 Luo, 2012, 2015, ...

Caveat We still have 50% efficiency loss in proton

Difference btw Baryon and Proton Numbers

MK, Asakawa, 2012

(1) $N_B^{(\text{net})} = N_B - N_{\bar{B}}$ deviates from the equilibrium value. (2) Boltzmann (Poisson) distribution for $N_B, N_{\bar{B}}$.

$$\begin{bmatrix}
2\langle (\delta N_p^{(\text{net})})^2 \rangle = \frac{1}{2} \langle (\delta N_B^{(\text{net})})^2 \rangle + \frac{1}{2} \langle (\delta N_B^{(\text{net})})^2 \rangle_{\text{free}} \\
2\langle (\delta N_p^{(\text{net})})^3 \rangle = \frac{1}{4} \langle (\delta N_B^{(\text{net})})^3 \rangle + \frac{3}{4} \langle (\delta N_B^{(\text{net})})^3 \rangle_{\text{free}} \\
2\langle (\delta N_p^{(\text{net})})^4 \rangle_c = \frac{1}{8} \langle (\delta N_B^{(\text{net})})^4 \rangle_c + \cdots$$
genuine info. noise (Poisson)
$$\begin{bmatrix}
\text{For free gas} \\
2\langle (\delta N_p^{(\text{net})})^n \rangle_c = \langle (\delta N_N^{(\text{net})})^n \rangle_c
\end{bmatrix}$$

Main Part Diffusion of conserved-charge fluctuations and rapidity blurring

2 Slot Machines

Can we get the cumulants of single slot machine?

 $\langle N^n \rangle_c$

 $\langle N^n \rangle_c$

2 Slot Machines

Can we get the cumulants of single slot machine?

$$\langle N^n \rangle_c = \frac{1}{2} \langle N^n \rangle_c$$

$\langle N^n \rangle_c = \frac{1}{4} \langle N^n \rangle_c$

$\langle N^n \rangle_c \equiv \frac{1}{4} \langle N^n \rangle_c$

Time Evolution of Fluctuations

Thermal Blurring

Thermal Blurring

Under Bjorken picture,

coordinate-space rapidity of medium

coordinate-space rapidity

of individual particles

distribution in rapidity space

• flat freezeout surface

Thermal distribution in η space

Y. Ohnishi+ in preparation

Rapidity distribution is not far away from Gaussian.

- blast wave
- flat freezeout surface

Formalism

Particles arrive at the detector with some probability.
 Sum all of them up. Make the distribution.

Take the continuum limit.

$\Delta\eta$ Dependence

With vanishing fluctuations before thermal blurring

Cumulants after blurring take nonzero values

With $\Delta y=1$, the effect is **not** well suppressed

Centrality Dependence

Is the centrality dependence understood solely by the thermal blurring at kinetic f.o.?

Centrality Dependence

Assumptions:

- Centrality independent cumulant at kinetic f.o.
- Thermal blurring at kinetic f.o.

Centrality dep. of blast wave parameters can qualitatively describe the one of $\langle \delta N_{\rm Q}^2 \rangle$

Diffusion (+ Thermal Blurring), of Non-Gaussian Cumulants

 $<\delta N_{\rm B}^2$ > and $<\delta N_{\rm p}^2$ > @ LHC ?

 $\langle \delta N_Q^2 \rangle, \langle \delta N_B^2 \rangle, \langle \delta N_p^2 \rangle$

should have different $\Delta\eta$ dependence.

Baryon # cumulants are experimentally observable! MK, Asakawa, 2012

 $<\delta N_{0}^{4} > @ LHC ?$

 $<\delta N_{0}^{4} > @ LHC ?$

Hydrodynamic Fluctuations

Landau, Lifshitz, Statistical Mechaniqs II Kapusta, Muller, Stephanov, 2012

Stochastic diffusion equation

Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Diffusion Master Equation

MK, Asakawa, Ono, 2014 MK, 2015

Solve the DME **exactly**, and take $a \rightarrow 0$ limit

No approx., ex. van Kampen's system size expansion

A Brownian Particle's Model

Hadronization (specific initial condition)

Initial distribution + motion of each particle \rightarrow cumulants of particle # in $\Delta \eta$

A Brownian Particle's Model

Hadronization (specific initial condition)

Initial distribution + motion of each particle → cumulants of particle # in $\Delta\eta$

Diffusion + Thermal Blurring

Total diffusion:
$$P(x - x'') = \int dx' P_1(x - x') P_2(x' - x'')$$

□ Diffusion + thermal blurring = described by a single P(x)□ Both are consistent with Gaussian → Single Gaussian

Baryons in Hadronic Phase

Time Evolution in Hadronic Phase

Hadronization (initial condition)

Boost invariance / infinitely long system
 Local equilibration / local correlation

Time Evolution in Hadronic Phase

Hadronization (initial condition)

Detector

Diffusion + Blurring

$\Delta\eta$ Dependence: 4th order

MK, NPA (2015)

new normalization

Characteristic $\Delta \eta$ dependences!

4th order : Large Initial Fluc.

MK, NPA (2015)

Initial Condition $D_4 = \frac{\langle Q_{(\text{net})}^4 \rangle_c}{\langle Q_{(\text{tot})} \rangle} = 4$ $b = \frac{\langle Q_{(\text{net})}^2 Q_{(\text{tot})} \rangle_c}{\langle Q_{(\text{net})} \rangle}$ $c = \frac{\langle Q_{(\text{tot})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle}$ $D_2 = \frac{\langle Q_{(\text{net})}^2 \rangle_c}{\langle Q_{(\text{tot})} \rangle} = 1$

 $D \sim M^{-1}$

$\Delta\eta$ Dependence @ STAR

Non-monotonic dependence on Δy ?

Summary

Plenty of information in $\Delta\eta$ dependences of various cumulants

 $\langle N_Q^2 \rangle_c, \ \langle N_Q^3 \rangle_c, \ \langle N_Q^4 \rangle_c, \ \langle N_B^2 \rangle_c, \ \langle N_B^3 \rangle_c, \ \langle N_B^4 \rangle_c, \ \langle N_S^2 \rangle_c, \ \cdots$

and those of non-conserved charges, mixed cumulants...

With ∆η dep. we can explore
> primordial thermodynamics
> non-thermal and transport property
> effect of thermal blurring

Future Studies

D Experimental side:

- rapidity window dependences
- baryon number cumulants
- BES for SPS- to LHC-energies

□ Theoretical side:

- > rapidity window dependences in dynamical models
- description of non-equilibrium non-Gaussianity
- accurate measurements on the lattice

■Both sides:

Compare theory and experiment carefully

Let's accelerate our understanding on fluctuations!

Very Low Energy Collisions

Large contribution of global charge conservationViolation of Bjorken scaling

Fluctuations at low \sqrt{s} should be interpreted carefully! Comparison with statistical mechanics would not make sense...

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Choices to introduce non-Gaussianity in equil.:

- \square *n* dependence of diffusion constant *D*(*n*)
- colored noise
- □ discretization of *n*

How to Introduce Non-Gaussianity?

Stochastic diffusion equation

$$\partial_{\tau} n = D \partial_{\eta}^2 n + \partial_{\eta} \xi(\eta, \tau)$$

Choices to introduce non-Gaussianity in equil.:

n dependence of diffusion constant *D*(*n*)
 colored noise
 discretization of *n* our choice

REMARK:

Fluctuations measured in HIC are almost Poissonian.

Time Evolution of Fluctuations

Time Evolution of Fluctuations

Particle # in $\Delta \eta$

- continues to change until kinetic freezeout due to diffusion.
- ② changes due to a conversion y → η at kinetic freezeout

"Thermal Blurring"