Fluctuation Signatures of QCD Critical Point

M. Stephanov

U. of Illinois at Chicago
Outline

1. QCD phase diagram, critical point and fluctuations
 - Critical fluctuations and correlation length
 - Higher moments and universality

2. Beam energy scan
 - Mapping to QCD and observables
 - Understanding data
 - Acceptance dependence
QCD Phase Diagram (a theorist’s view)

Lattice at $\mu_B \lesssim 2T$

Critical point – a singularity of EOS, anchors the 1st order transition.
Why fluctuations are large at a critical point?

The key equation:

\[P(X) \sim e^{S(X)} \quad (Einstein \ 1910) \]
Why fluctuations are large at a critical point?

The key equation:

$$P(X) \sim e^{S(X)} \quad (Einstein \ 1910)$$

For an extensive quantity $$\langle X \rangle \sim V$$:

$$\langle X^2 \rangle_c = - (S'')^{-1} = VT\chi$$

Susceptibility $$\chi$$ is finite in thermodynamic limit $$V \to \infty$$ — CLT.
Why fluctuations are large at a critical point?

- The key equation:
 \[P(X) \sim e^{S(X)} \quad (Einstein \ 1910) \]

- For an extensive quantity \(\langle X \rangle \sim V \):
 \[\langle X^2 \rangle_c = - (S'')^{-1} = VT\chi \]

 Susceptibility \(\chi \) is finite in thermodynamic limit \(V \to \infty \) — CLT.

- At the critical point \(S(X) \) has a “flat direction” or “soft-mode”.
 Fluctuation measures such as \(\chi \) diverge as \(V \to \infty \).

CLT?
Why fluctuations are large at a critical point?

- The key equation:

\[P(X) \sim e^{S(X)} \quad (Einstein \ 1910) \]

- For an extensive quantity \(\langle X \rangle \sim V \):

\[\langle X^2 \rangle_c = - (S'')^{-1} = VT \chi \]

Susceptibility \(\chi \) is finite in thermodynamic limit \(V \to \infty \) — CLT.

- At the critical point \(S(X) \) has a “flat direction” or “soft-mode”.

Fluctuation measures such as \(\chi \) diverge as \(V \to \infty \).

ClT? Fluctuations are not averaging out, but add coherently: \(\xi \to \infty \)
Fluctuations of order parameter and ξ

- Fluctuations at CP – conformal field theory.
 Parameter-free \rightarrow universality. Near CP $\xi = m_\sigma^{-1} < \infty$,

 $$P[\sigma] \sim \exp\{-\Omega[\sigma]/T\},$$

 $$\Omega = \int d^3x \left[\frac{1}{2} (\nabla \sigma)^2 + \frac{m_\sigma^2}{2} \sigma^2 + \frac{\lambda_3}{3} \sigma^3 + \frac{\lambda_4}{4} \sigma^4 + \ldots \right].$$

- Moments of order parameter $\sigma_V \equiv \int d^3x \sigma(x)$:

 Higher moments grow faster with ξ with universal exponents:
 $$\langle \sigma^n_V \rangle \sim V \xi^k, \quad k = n(3 - [\sigma]) - 3, \quad [\sigma] = \beta/\nu \approx 1/2.$$
Higher moments also depend on which side of the CP we are

$$\kappa_3[\sigma_V] = 2VT^{3/2} \tilde{\lambda}_3 \xi^{4.5}; \quad \kappa_4[\sigma_V] = 6VT^2 \left[2(\tilde{\lambda}_3)^2 - \tilde{\lambda}_4 \right] \xi^7.$$

This dependence is also universal.

2 relevant directions/parameters. Using Ising model variables:

- Far from CP: \(\kappa_4 = 0 \)
- Crossover side: \(\kappa_4 < 0 \)
- 1st order side: \(\kappa_4 > 0 \)
In QCD \((t, H) \rightarrow (\mu - \mu_{CP}, T - T_{CP})\)

the mapping is not universal

\[\kappa_4[\sigma_V] < 0 \text{ means } \kappa_4[M] \langle M \rangle < 1 \]

NB: Sensitivity to \(M\) accepted: \((\kappa_4)\sigma \sim M^4\) (number of 4-tets).
In QCD \((t, H) \rightarrow (\mu - \mu_{CP}, T - T_{CP})\)

the mapping is not universal
In QCD \((t, H) \rightarrow (\mu - \mu_{\text{CP}}, T - T_{\text{CP}})\) the mapping is not universal.

Observed fluctuations, e.g., multiplicity \(M\), are not the same as \(\sigma_V\), but related

\[
\kappa_4[M] = \langle M \rangle + \kappa_4[\sigma_V] \times g^4 \left(\frac{d\langle M \rangle}{d\sigma} \right)^4 + \ldots,
\]

\(\sim M^4\)

Physical picture – fluctuating \(\sigma\) background, \(m(\sigma)\).

\(g\) – coupling of the critical mode \((g = \frac{dm}{d\sigma})\).
Mapping to QCD and experimental observables

- In QCD \((t, H) \rightarrow (\mu - \mu_{CP}, T - T_{CP})\)

 the mapping is not universal

- Observed fluctuations, e.g., multiplicity \(M\),
 are not the same as \(\sigma_V\), but related

\[
\kappa_4[M] = \langle M \rangle + \kappa_4[\sigma_V] \times g^4 4! \sim M^4
\]

Physical picture – fluctuating \(\sigma\) background, \(m(\sigma)\).

\(g\) – coupling of the critical mode \((g = dm/d\sigma)\).

- \(\kappa_4[\sigma_V] < 0\) means \(\frac{\kappa_4[M]}{\langle M \rangle} < 1\)
In QCD \((t, H) \rightarrow (\mu - \mu_{CP}, T - T_{CP})\)

the mapping is not universal

Observed fluctuations, e.g., multiplicity \(M\), are not the same as \(\sigma_V\), but related

\[
\kappa_4[M] = \langle M \rangle + \kappa_4[\sigma_V] \times g^4 \left(\frac{\sigma}{\sigma_V} \right)^4 + \ldots, \quad \sim M^4
\]

Physical picture – fluctuating \(\sigma\) background, \(m(\sigma)\).

\(g\) – coupling of the critical mode \((g = dm/d\sigma)\).

\(\kappa_4[\sigma_V] < 0\) means \(\frac{\kappa_4[M]}{\langle M \rangle} < 1\)

NB: Sensitivity to \(M_{\text{accepted}}\): \((\kappa_4)_\sigma \sim M^4\) (number of 4-tets).
Coupling vs particle momentum

For $g \bar{\psi} \psi$ coupling, or $m(\sigma)$:

$$\mathcal{O} = \int_p \frac{\partial f_p(m(\sigma))}{\partial \sigma} = -\frac{g}{T} \int_p \frac{f_p(1 - f_p)}{\gamma_p}$$

All protons in thermal distribution contribute with weight $\sim f_p$. Fluctuations of σ correlate particles with all (thermal) momenta.
For $g\bar{\psi}\psi$ coupling, or $m(\sigma)$:

$$\int_p \frac{\partial f_p(m(\sigma))}{\partial \sigma} = -\frac{g}{T} \int_p \frac{f_p(1 - f_p)}{\gamma_p}$$

All protons in thermal distribution contribute with weight $\sim f_p$.

fluctuations of σ correlate particles with all (thermal) momenta.
Why ξ is finite

System expands and is out of equilibrium

In this talk – *equilibrium* fluctuations. The only dynamical effect we consider is the one which makes ξ finite:

Critical slowing down. Universal scaling law:

$$\xi \sim \tau^{1/z},$$

where $1/\tau$ is expansion rate

and $z \approx 3$ (Son-MS).

Estimates: $\xi \sim 2 - 3$ fm (Berdnikov-Rajagopal, Asakawa-Nonaka).

Need full critical dynamics to take non-equilibrium into account

e.g., memory effect – Mukherjee-Venugopalan-Yin

For more see Nahrgang’s talk
What should we see in the BES?

M. Stephanov (UIC)
What should we see in the BES?

M. Stephanov (UIC)

Fluctuations and QCD Critical Point

Net-Proton
0.4<p_{T}<2 (GeV/c),|y|<0.5
- 0-5%
- 5-10%
- 70-80%

UrQMD, 0-5%

STAR Preliminary

\(\sqrt{s_{NN}} \) (GeV)

\(\kappa \sigma^2 \)
What should we see in the BES?

Scenario 1

Net-Proton
0.4<p_T<2 (GeV/c), lyl<0.5
- 0-5%
- 5-10%
- 70-80%

STAR Preliminary

K o^2

speculative

M. Stephanov (UIC)
Fluctuations and QCD Critical Point
GSI 2015
What should we see in the BES?

Scenario 2

Net-Proton
0.4<p_T<2 (GeV/c), |y|<0.5
- 0-5%
- 5-10%
- 70-80%
- \[\text{UrQMD, 0-5\%}\]

\(\kappa \sigma^2\)

\(\sqrt{s}\)

baseline

\(\omega_4\)

\(\sqrt{s_{NN}}\) (GeV)

STAR Preliminary

speculative
Skewness?
Skewness?

[Graph and text discussing skewness and freezeout]

M. Stephanov (UIC) Fluctuations and QCD Critical Point GSI 2015 11 / 17
Skewness?
Questions

- 14.5 GeV: physics or detector issues?

 BES II will help answer.

- If confirmed as physics –

 Finer measurements may be needed: 13 GeV, 16.5 GeV?

- Then 7.7 GeV – another physics effect? Perhaps, 1st order transition (non-equilibrium)?
Acceptance dependence
Correlations – spatial vs kinematic

$\xi \sim 1 - 3 \text{ fm}$

$\Delta \eta_{\text{corr}} = \frac{\xi}{\tau_f} \sim 0.1 - 0.3$

Particles within $\Delta \eta_{\text{corr}}$ have thermal rapidity spread. Thus

$\Delta y_{\text{corr}} \sim 1 \gg \Delta \eta_{\text{corr}}$
Acceptance dependence – two regimes

How do cumulants depend on acceptance?

Let $\kappa_n(M)$ be a cumulant of M – multiplicity of accepted, say, protons.

- $\Delta y \gg \Delta y_{corr}$ – a theory limit (thermodynamic): CLT applies.

$$\kappa_n \sim M$$

or $\omega_n \equiv \frac{\kappa_n}{M} \to \text{const}$ – an “intensive”, or volume indep. measure.
Acceptance dependence – two regimes

How do cumulants depend on acceptance?

Let $\kappa_n(M)$ be a cumulant of M – multiplicity of *accepted*, say, protons.

- $\Delta y \gg \Delta y_{\text{corr}}$ – a theory limit (thermodynamic): CLT applies.

 $\kappa_n \sim M$

 or $\omega_n \equiv \frac{\kappa_n}{M} \to \text{const}$ – an “intensive”, or volume indep. measure

- $\Delta y \ll \Delta y_{\text{corr}}$ – more typical in experiment.

 Subtracting trivial (uncorrelated, Poisson) contribution:

 $\kappa_n - M \sim M^n$ – proportional to number of correlated n-plets;

 or $\omega_n - 1 \sim M^{n-1}$.
Critical point fluctuations vs acceptance

Proton multiplicity at 19.6 GeV: \(\omega_{n,\sigma} \equiv \omega_n - 1 \)

\[PT \in (0, 2) \text{GeV} \]
\[PT \in (0.4, 2) \text{GeV} \]
\[PT \in (0.4, 0.8) \text{GeV} \]

\(\Delta y \)
\(\omega_{2,\sigma}(\Delta y) \)
\(\omega_{4,\sigma}(\Delta y) \)

\(p_T \) and rapidity cuts have qualitatively similar effects.
Critical point fluctuations vs acceptance

Proton multiplicity at 19.6 GeV: \(\omega_{n,\sigma} \equiv \omega_n - 1 \)

\[\begin{align*}
\omega_{n,\sigma} &\quad \Delta y \\
\omega_{n,\sigma}(\infty) &\quad \Delta y \\
\end{align*} \]

\(P_T \in (0, 2) \text{ GeV} \)
\(P_T \in (0.4, 2) \text{ GeV} \)
\(P_T \in (0.4, 0.8) \text{ GeV} \)

\(P_T \) and rapidity cuts have qualitatively similar effects.

- Wider acceptance improves value/error:
 - errors grow slower than \(M^n \).
Fluctuations reflect universal features of the CP and could be used to discover it via the BES.

Interesting recent data. Needs better understanding.

14.5 GeV results: critical physics or detector issues? BESII + 13 GeV, 16.5 GeV?

What physics in 7.7 GeV?

As long as $\Delta y \ll \Delta y_{\text{corr}}$: $\kappa_n[M] - M \sim M^n$.

Wider acceptance improves relative precision.

Dynamical description of fluctuations is essential.
More ...
Critical slowing down.

Mukherjee-Venugopalan-Yin

\[
\frac{dP}{d\tau} = F[P] \\
\downarrow \\
\frac{d\kappa_n}{d\tau} = L[\kappa_n, \kappa_{n-1}, \ldots]
\]
Time evolution of cumulants (memory)

Critical slowing down.

Mukherjee-Venugopalan-Yin

\[\frac{dP}{d\tau} = F[P] \]

\[\downarrow \]

\[\frac{d\kappa_n}{d\tau} = L[\kappa_n, \kappa_{n-1}, \ldots] \]
Time evolution of cumulants (memory)

Critical slowing down.

Mukherjee-Venugopalan-Yin

\[\frac{dP}{d\tau} = F[P] \]

\[\downarrow \]

\[\frac{d\kappa_n}{d\tau} = L[\kappa_n, \kappa_{n-1}, \ldots] \]
Time evolution of cumulants (memory)

Critical slowing down.

Mukherjee-Venugopalan-Yin

\[
\frac{dP}{d\tau} = F[P] \\
\downarrow \\
\frac{d\kappa_n}{d\tau} = L[\kappa_n, \kappa_{n-1}, \ldots]
\]